In-situ Raman spectroscopy unveils metastable crystallization in lead metasilicate glass

被引:15
|
作者
Pena, R. B. [1 ,2 ]
Sampaio, D. V. [1 ,2 ,4 ]
Lancelotti, R. F. [2 ,3 ]
Cunha, T. R. [1 ,2 ]
Zanotto, E. D. [2 ]
Pizani, P. S. [1 ,2 ]
机构
[1] Univ Fed Sao Carlos, Phys Dept, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Mat Engn, Ctr Res Technol & Educ Vitreous Mat, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Fed Sao Carlos, Grad Program Mat Sci & Engn, BR-13565905 Sao Carlos, SP, Brazil
[4] Univ Fed Alagoas, Phys Inst, BR-57072900 Maceio, AL, Brazil
基金
巴西圣保罗研究基金会;
关键词
Lead metasilicate glass; In-situ crystallization; Raman spectroscopy; Ostwald's rule; SILICATE-GLASSES; CRYSTAL-STRUCTURE; SI-29; SPECTRA;
D O I
10.1016/j.jnoncrysol.2020.120254
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The formation of metastable phases is a relevant, challenging and yet underexplored subject in glass crystallization. In this work, we examined the isothermal crystallization of PbO.SiO2 lead metasilicate glass by using in situ Raman spectroscopy. We provide evidence for the evolution process from the glass to alamosite, the stable crystalline phase, which is intermediated by two distinct metastable phases at different temperatures. At 550 degrees C the crystallization pathway proceeded from the low PbSiO3 to alamosite, whereas at 600 degrees C the crystalline phase evolved from the hexagonal PbSiO3 to alamosite. We found no interconversion between these two metastable phases, indicating that both can precipitate prior to alamosite stabilization. These findings demystify the alleged complexity of the crystallization process of lead metasilicate glass, raised in the literature, whose data are critically analyzed and discussed herein.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] In-situ surface identification of molybdenum by Raman spectroscopy.
    Li, YS
    Wang, K
    He, PX
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 214 : 62 - ANYL
  • [22] In-situ monitoring of the curing of epoxy resins by Raman spectroscopy
    Merad, L.
    Cochez, M.
    Margueron, S.
    Jauchem, F.
    Ferriol, M.
    Benyoucef, B.
    Bourson, P.
    POLYMER TESTING, 2009, 28 (01) : 42 - 45
  • [23] A facility for studying corrosion via in-situ Raman spectroscopy
    Ramsundar, V. S.
    Daub, K.
    Persaud, S. Y.
    Daymond, M. R.
    JOURNAL OF NUCLEAR MATERIALS, 2024, 595
  • [24] Resonance Raman spectroscopy for in-situ monitoring of radiation damage
    Meents, A.
    Owen, R. L.
    Murgida, D.
    Hildebrande, P.
    Schneider, R.
    Pradervand, C.
    Bohler, P.
    Schulze-Briese, C.
    SYNCHROTRON RADIATION INSTRUMENTATION, PTS 1 AND 2, 2007, 879 : 1984 - +
  • [25] Raman spectroscopy for in-situ characterisation of steam generator deposits
    Rochefort, PA
    Guzonas, DA
    Turner, CW
    NONDESTRUCTIVE CHARACTERIZATION OF MATERIALS VIII, 1998, : 811 - 816
  • [26] COUPLED IN-SITU RAMAN-SCATTERING AND IMPEDANCE SPECTROSCOPY
    LORIDANT, S
    LUCAZEAU, G
    ANALUSIS, 1995, 23 (02) : M17 - M19
  • [27] Raman-Fluorescence Spectroscopy for Underwater in-situ Application
    Guo Jin-jia
    Zhang Feng
    Liu Chun-hao
    Li Ying
    Zheng Rong-er
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37 (10) : 3099 - 3102
  • [28] In-Situ Raman Spectroscopy of α- and γ-FeOOH during Cathodic Load
    Hedenstedt, K.
    Backstrom, J.
    Ahlberg, E.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (09) : H621 - H627
  • [29] IN-SITU RAMAN-SPECTROSCOPY OF REACTIONS IN SUPERCRITICAL WATER
    MASTEN, DA
    FOY, BR
    HARRADINE, DM
    DYER, RB
    JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (33): : 8557 - 8559
  • [30] In-situ monitoring of urethane formation by FTIR and Raman spectroscopy
    Xu, LF
    Li, C
    Ng, KYS
    JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (17): : 3952 - 3957