Fitting circles to data with correlated noise

被引:23
|
作者
Chernov, N. [1 ]
Sapirstein, P. N. [2 ]
机构
[1] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
[2] Cornell Univ, Dept Hist Art & Archaeol, Ithaca, NY 14853 USA
关键词
D O I
10.1016/j.csda.2008.05.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the problem of fitting circles to scattered data. Unlike many other studies, we assume that the noise is (strongly) correlated; we adopt a particular model where correlations decay exponentially with the distance between data points. Our main results are formulas for the maximum likelihood estimates and their covariance matrix. Our study is motivated by (and applied to) arcs collected during archeological field work. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5328 / 5337
页数:10
相关论文
共 50 条
  • [11] Fitting circles to scattered data: parameter estimates have no moments
    Chernov, N.
    METRIKA, 2011, 73 (03) : 373 - 384
  • [12] Fitting models to correlated data (large samples)
    Féménias, JL
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2004, 224 (01) : 73 - 98
  • [13] Fitting a Straight-Line to Data Points with Correlated Noise Between Coordinate Components under Constraints
    Song Z.
    Guo J.
    Li J.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2021, 56 (06): : 1283 - 1289
  • [14] Statistical Inference in Circular Structural Model and Fitting Circles to Noisy Data
    Donner, A.
    Goldenshluger, A.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (04) : 1350 - 1369
  • [15] Least squares fitting of circles
    Chernov, N
    Lesort, C
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2005, 23 (03) : 239 - 252
  • [16] Least Squares Fitting of Circles
    N. Chernov
    C. Lesort
    Journal of Mathematical Imaging and Vision, 2005, 23 : 239 - 252
  • [17] Fitting concentric circles to measurements
    Drezner, Zvi
    Brimberg, Jack
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2014, 79 (01) : 119 - 133
  • [18] Fitting concentric circles to measurements
    Zvi Drezner
    Jack Brimberg
    Mathematical Methods of Operations Research, 2014, 79 : 119 - 133
  • [19] FITTING CORRELATED HADRON MASS-SPECTRUM DATA
    MICHAEL, C
    MCKERRELL, A
    PHYSICAL REVIEW D, 1995, 51 (07) : 3745 - 3750
  • [20] Reducing correlated noise in fMRI data
    de Zwart, Jacco A.
    van Gelderen, Peter
    Fukunaga, Masaki
    Duyn, Jeff H.
    MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (04) : 939 - 945