The Barnes-Hurwitz zeta cocycle on PGL2(Q)

被引:1
|
作者
Espinoza, Milton [1 ]
机构
[1] Univ Valparaiso, Fac Ciencias, Inst Matemat, Gran Bretana 1091,3er piso, Valparaiso, Chile
关键词
Barnes zeta function; Hurwitz zeta function; Group cocycles; PGL(2)(Q); Real quadratic fields; GENERATING-FUNCTIONS; EISENSTEIN COCYCLES; DOUBLE GAMMA; VALUES;
D O I
10.1016/j.jnt.2022.02.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a 1-co cycle 3 of the group G = PGL(2)(Q) with values in a module D of distributions (in the sense of Stevens and Hu-Solomon). This cocycle is essentially constructed from the Barnes' double zeta function and it has the advantage of defining a family of maps that depend meromorphically on the usual parameter s is an element of C. In particular, this permits the extension of the cocycle property to any Taylor coefficient of such zeta function at s = 0. Furthermore, we show that the class of 3 in the first cohomology group H-1(G, D) is nonzero, and we use basic facts about the arithmetic of real quadratic fields to prove the vanishing of H-0(G,D), the group of G -invariant elements in D. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 119
页数:29
相关论文
共 50 条
  • [1] The Barnes-Hurwitz zeta cocycle at s=0 and Ehrhart quasi-polynomials of triangles
    Espinoza, Milton
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (04) : 1141 - 1160
  • [2] The covering radius of PGL2(q)
    Xia, Binzhou
    [J]. DISCRETE MATHEMATICS, 2017, 340 (10) : 2469 - 2471
  • [3] Polytopes with groups of type PGL2(q)
    Leemans, Dimitri
    Schulte, Egon
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2009, 2 (02) : 163 - 171
  • [4] PGL2(q) cannot be determined by its cs
    Ahanjideh, Neda
    [J]. FILOMAT, 2020, 34 (05) : 1713 - 1719
  • [5] On the lifting from PGL2 x PGL2 to G2
    Ginzburg, D
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (25) : 1499 - 1518
  • [6] On Generating Coset Representatives of PGL2(Fq) in PGL2(Fq2)
    Zhuang, Jincheng
    Cheng, Qi
    [J]. INFORMATION SECURITY AND CRYPTOLOGY, INSCRYPT 2015, 2016, 9589 : 167 - 177
  • [7] ON THE DISTRIBUTION OF ORBITS OF PGL2(q) IN Fqn AND THE KLAPPER CONJECTURE
    Shparlinski, Igor E.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 23 (04) : 2093 - 2099
  • [8] Recognition of the finite almost simple groups PGL2(q) by their spectrum
    Chen, G. Y.
    Mazurov, V. D.
    Shi, W. J.
    Vasil'ev, A. V.
    Zhurtov, A. Kh.
    [J]. JOURNAL OF GROUP THEORY, 2007, 10 (01) : 71 - 85
  • [9] EXCEPTIONAL REPRESENTATIONS OF GL2(Q2) AND PGL2(Q2)
    NOBS, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (18): : 767 - 769
  • [10] Classifying and generating exact coset representatives of PGL2(Fq) in PGL2(Fq2)
    Zhu, Yuqing
    Zhuang, Jincheng
    Lv, Chang
    Lin, Dongdai
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2016, 42 : 118 - 127