The Barnes-Hurwitz zeta cocycle at s=0 and Ehrhart quasi-polynomials of triangles

被引:0
|
作者
Espinoza, Milton [1 ]
机构
[1] Univ La Serena, Fac Ciencias, Dept Matemat, Juan Cisternas 1200, La Serena, Region De Coqui, Chile
关键词
Barnes zeta function; Hurwitz zeta function; special values; group cocycles; rational polytopes; Ehrhart quasi-polynomials;
D O I
10.1142/S179304212450057X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following a theorem of Hayes, we give a geometric interpretation of the special value at s = 0 of certain 1-cocycle on PGL(2)(Q) previously introduced by the author. This work yields three main results: an explicit formula for our cocycle at s = 0, a generalization and a new proof of Hayes' theorem, and an elegant summation formula for the zeroth coefficient of the Ehrhart quasi-polynomial of certain triangles in Double-struck capital R-2.
引用
收藏
页码:1141 / 1160
页数:20
相关论文
共 15 条
  • [1] The Barnes-Hurwitz zeta cocycle on PGL2(Q)
    Espinoza, Milton
    [J]. JOURNAL OF NUMBER THEORY, 2022, 241 : 91 - 119
  • [2] Rational Ehrhart quasi-polynomials
    Linke, Eva
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (07) : 1966 - 1978
  • [3] PICK'S FORMULA AND GENERALIZED EHRHART QUASI-POLYNOMIALS
    Hibi, Takayuki
    Nakamura, Miyuki
    Natalia, Ivana
    Samudro, Kristantyo
    Tsuchiya, Akiyoshi
    [J]. JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2015, 21 (02) : 71 - 75
  • [4] Maximal periods of (Ehrhart) quasi-polynomials
    Beck, Matthias
    Sam, Steven V.
    Woods, Kevin M.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (03) : 517 - 525
  • [5] Characteristic polynomials, Ehrhart quasi-polynomials, and torus groups
    Lawrence, J
    [J]. JOURNAL OF NUMBER THEORY, 2006, 117 (02) : 315 - 329
  • [6] Ehrhart Quasi-Polynomials of Almost Integral Polytopes
    de Vries, Christopher
    Yoshinaga, Masahiko
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2023,
  • [7] Counting chemical compositions using Ehrhart quasi-polynomials
    Shane L. Hubler
    Gheorghe Craciun
    [J]. Journal of Mathematical Chemistry, 2012, 50 : 2446 - 2470
  • [8] Counting chemical compositions using Ehrhart quasi-polynomials
    Hubler, Shane L.
    Craciun, Gheorghe
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (09) : 2446 - 2470
  • [9] Cubic Graphs, Their Ehrhart Quasi-Polynomials, and a Scissors Congruence Phenomenon
    Fernandes, Cristina G.
    de Pina, Jose C.
    Alfonsin, Jorge Luis Ramirez
    Robins, Sinai
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (01) : 227 - 243
  • [10] Cubic Graphs, Their Ehrhart Quasi-Polynomials, and a Scissors Congruence Phenomenon
    Cristina G. Fernandes
    José C. de Pina
    Jorge Luis Ramírez Alfonsín
    Sinai Robins
    [J]. Discrete & Computational Geometry, 2021, 65 : 227 - 243