Sobolev space of functions valued in a monotone Banach family

被引:3
|
作者
Evseev, Nikita [1 ]
Menovschikov, Alexander [2 ]
机构
[1] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
[2] Sobolev Inst Math, Novosibirsk 630090, Russia
关键词
Sobolev spaces of vector-valued functions; L-p-direct integral; Bochner integral; PARABOLIC PDES; EQUATIONS;
D O I
10.1016/j.jmaa.2020.124440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the metrical approach to Sobolev spaces, which arise in various evolution PDEs. Functions from those spaces are defined on an interval and take values in a nested family of Banach spaces. In this case we adapt the definition of Newtonian spaces. For a monotone family, we show the existence of weak derivative, obtain an isomorphism to the standard Sobolev space, and provide some scalar characteristics. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] REFLECTION PRINCIPLE FOR BANACH SPACE-VALUED ANALYTIC FUNCTIONS
    FINKELST.M
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (05): : 1189 - &
  • [22] The differentiability of Banach space-valued functions of bounded variation
    Sokol Bush Kaliaj
    [J]. Monatshefte für Mathematik, 2014, 173 : 343 - 359
  • [23] FACTORIZATION OF POSITIVE OPERATOR VALUED FUNCTIONS ON A BANACH-SPACE
    MIAMEE, AG
    SALEHI, H
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (02) : 103 - 113
  • [24] NUMBER OF VALUED MONOTONE FUNCTIONS
    ALEKSEEV, VB
    [J]. DOKLADY AKADEMII NAUK SSSR, 1973, 208 (03): : 505 - 508
  • [25] ON FINITE FAMILY OF MONOTONE VARIATIONAL INCLUSION PROBLEMS IN REFLEXIVE BANACH SPACE
    Izuchukwu, C.
    Ogwo, G. N.
    Mebawondu, A. A.
    Mewomo, O. T.
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (03): : 89 - 104
  • [26] On finite family of monotone variational inclusion problems in reflexive banach space
    Izuchukwu, C.
    Ogwo, G.N.
    Mebawondu, A.A.
    Mewomo, O.T.
    [J]. 1600, Politechnica University of Bucharest, Splaiul Independentei 313 - Sector 6, Bucharest, 77206, Romania (82): : 89 - 104
  • [27] TANGENTIAL LIMITS OF MONOTONE SOBOLEV FUNCTIONS
    MIZUTA, Y
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1995, 20 (02): : 315 - 326
  • [28] Lindelof theorems for monotone Sobolev functions
    Futamura, T
    Mizuta, Y
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2003, 28 (02) : 271 - 277
  • [29] Multidimensional Tauberian theorems for Banach-space valued generalized functions
    Drozhzhinov, YN
    Zav'yalov, BI
    [J]. SBORNIK MATHEMATICS, 2003, 194 (11-12) : 1599 - 1646
  • [30] MARTINGALE AND INTEGRAL-TRANSFORMS OF BANACH-SPACE VALUED FUNCTIONS
    DEFRANCIA, JLR
    [J]. LECTURE NOTES IN MATHEMATICS, 1986, 1221 : 195 - 222