MULTI-QUBIT TRIGONOMETRIC STATES AND ENTANGLEMENT MONOTONES

被引:0
|
作者
Frydryszak, Andrzej M. [1 ]
机构
[1] Univ Wroclaw, Inst Theoret Phys, PL-52004 Wroclaw, Poland
关键词
Nilpotent quantum mechanics; entanglement monotones; invariants' theory;
D O I
10.1142/S0219887812610051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The formalism of functions of commuting nilpotent variables allows to describe multi-qubit pure states and their entanglement. The family of states defined by the generalized trigonometric eta-functions is specially interesting from mathematical and physical point of view (it covers the set of physically interesting states, including: Werner states, cluster Werner states, GHZ states etc.). We analyze the behavior of two recently proposed symmetric entanglement monotones on the trigonometric states.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Pairwise entanglement in symmetric multi-qubit systems
    X. Wang
    K. Mølmer
    [J]. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2002, 18 : 385 - 391
  • [22] Deterministic multi-qubit entanglement in a quantum network
    Zhong, Youpeng
    Chang, Hung-Shen
    Bienfait, Audrey
    Dumur, Etienne
    Chou, Ming-Han
    Conner, Christopher R.
    Grebel, Joel
    Povey, Rhys G.
    Yan, Haoxiong
    Schuster, David, I
    Cleland, Andrew N.
    [J]. NATURE, 2021, 590 (7847) : 571 - 575
  • [23] Properties of entanglement monotones for three-qubit pure states
    Gingrich, RM
    [J]. PHYSICAL REVIEW A, 2002, 65 (05): : 7
  • [24] Multi-qubit stabilizer and cluster entanglement witnesses
    M. A. Jafarizadeh
    G. Najarbashi
    Y. Akbari
    H. Habibian
    [J]. The European Physical Journal D, 2008, 47 : 233 - 255
  • [25] Practical methods for witnessing genuine multi-qubit entanglement in the vicinity of symmetric states
    Toth, Geza
    Wieczorek, Witlef
    Krischek, Roland
    Kiesel, Nikolai
    Michelberger, Patrick
    Weinfurter, Harald
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [26] A bipartite dass of entanglement monotones for N-qubit pure states
    Emary, C
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (34): : 8293 - 8302
  • [27] Fully multi-qubit entangled states
    Cai, Jian-Ming
    Zhou, Zheng-Wei
    Guo, Guang-Can
    [J]. QUANTUM INFORMATION & COMPUTATION, 2007, 7 (08) : 766 - 774
  • [28] A simple quantum voting scheme with multi-qubit entanglement
    Xue, Peng
    Zhang, Xin
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [29] Construction of multi-qubit optimal genuine entanglement witnesses
    Han, Kyung Hoon
    Kye, Seung-Hyeok
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (17)
  • [30] Controlling Entanglement in Multi-Qubit System with an External Field
    Zhiyong Liu
    Kui-Hua Gong
    [J]. International Journal of Theoretical Physics, 2013, 52 : 2631 - 2635