MULTI-QUBIT TRIGONOMETRIC STATES AND ENTANGLEMENT MONOTONES

被引:0
|
作者
Frydryszak, Andrzej M. [1 ]
机构
[1] Univ Wroclaw, Inst Theoret Phys, PL-52004 Wroclaw, Poland
关键词
Nilpotent quantum mechanics; entanglement monotones; invariants' theory;
D O I
10.1142/S0219887812610051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The formalism of functions of commuting nilpotent variables allows to describe multi-qubit pure states and their entanglement. The family of states defined by the generalized trigonometric eta-functions is specially interesting from mathematical and physical point of view (it covers the set of physically interesting states, including: Werner states, cluster Werner states, GHZ states etc.). We analyze the behavior of two recently proposed symmetric entanglement monotones on the trigonometric states.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Entanglement monotones for multi-qubit states based on geometric invariant theory
    Heydari, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (01)
  • [2] ENTANGLEMENT IN MULTI-QUBIT PURE FERMIONIC COHERENT STATES
    Najarbashi, G.
    Maleki, Y.
    [J]. ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (3-4): : 279 - 292
  • [3] Effect of Entanglement on Geometric Phase for Multi-Qubit States
    Williamson, Mark S.
    Vedral, Vlatko
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2009, 16 (2-3): : 305 - 323
  • [4] The geometry of multi-qubit entanglement
    Iwai, Toshihiro
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (40) : 12161 - 12184
  • [5] An observable measure of entanglement for pure states of multi-qubit systems
    Brennen, GK
    [J]. QUANTUM INFORMATION & COMPUTATION, 2003, 3 (06) : 619 - 626
  • [6] Entanglement criteria and full separability of multi-qubit quantum states
    Guehne, Otfried
    [J]. PHYSICS LETTERS A, 2011, 375 (03) : 406 - 410
  • [7] Construction of entanglement witnesses based on concurrence for multi-qubit states
    Heydar, Hoshang
    [J]. QUANTUM INFORMATION & COMPUTATION, 2008, 8 (8-9) : 791 - 796
  • [8] Entanglement entropy in quasi-symmetric multi-qubit states
    Li, Zhi-Hua
    Wang, An-Min
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (02)
  • [9] ENTANGLEMENT OPERATOR FOR A MULTI-QUBIT SYSTEM
    Bagnasco, Chiara
    Kondo, Yasushi
    Nakahara, Mikio
    [J]. QUANTUM INFORMATION AND QUANTUM COMPUTING, 2013, 6 : 167 - 169
  • [10] Homological analysis of multi-qubit entanglement
    Di Pierro, Alessandra
    Mancini, Stefano
    Memarzadeh, Laleh
    Mengoni, Riccardo
    [J]. EPL, 2018, 123 (03)