Network-guided sparse regression modeling for detection of gene-by-gene interactions

被引:4
|
作者
Lu, Chen [1 ]
Latourelle, Jeanne [2 ,3 ,4 ]
O'Connor, George T. [2 ,4 ]
Dupuis, Josee [1 ,4 ,5 ]
Kolaczyk, Eric D. [5 ,6 ]
机构
[1] Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02215 USA
[2] Boston Univ, Sch Med, Dept Med, Ctr Pulm, Boston, MA 02118 USA
[3] Boston Univ, Sch Med, Dept Neurol, Boston, MA 02118 USA
[4] NHLBIs Framingham Heart Study, Framingham, MA USA
[5] Boston Univ, Program Bioinformat, Boston, MA 02215 USA
[6] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
关键词
GENOME-WIDE ASSOCIATION; PENALIZED LOGISTIC-REGRESSION; ENVIRONMENT INTERACTION; SELECTION; TOOL;
D O I
10.1093/bioinformatics/btt139
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Genetic variants identified by genome-wide association studies to date explain only a small fraction of total heritability. Gene-by-gene interaction is one important potential source of unexplained total heritability. We propose a novel approach to detect such interactions that uses penalized regression and sparse estimation principles, and incorporates outside biological knowledge through a network-based penalty. Results: We tested our new method on simulated and real data. Simulation showed that with reasonable outside biological knowledge, our method performs noticeably better than stage-wise strategies (i.e. selecting main effects first, and interactions second, from those main effects selected) in finding true interactions, especially when the marginal strength of main effects is weak. We applied our method to Framingham Heart Study data on total plasma immunoglobulin E (IgE) concentrations and found a number of interactions among different classes of human leukocyte antigen genes that may interact to influence the risk of developing IgE dysregulation and allergy.
引用
收藏
页码:1241 / 1249
页数:9
相关论文
共 50 条
  • [11] Interpretable network-guided epistasis detection
    Duroux, Diane
    Climente-Gonzalez, Hector
    Azencott, Chloe-Agathe
    Van Steen, Kristel
    GIGASCIENCE, 2022, 11
  • [12] Gene-by-gene interactions associated with the risk of conotruncal heart defects
    Lyu, Chen
    Webber, Daniel M.
    MacLeod, Stewart L.
    Hobbs, Charlotte A.
    Li, Ming
    MOLECULAR GENETICS & GENOMIC MEDICINE, 2020, 8 (01):
  • [13] An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia
    S. Mascheretti
    A. Bureau
    V. Trezzi
    R. Giorda
    C. Marino
    Human Genetics, 2015, 134 : 749 - 760
  • [14] An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia
    Mascheretti, S.
    Bureau, A.
    Trezzi, V.
    Giorda, R.
    Marino, C.
    HUMAN GENETICS, 2015, 134 (07) : 749 - 760
  • [15] Robust sparse Bayesian regression for longitudinal gene-environment interactions
    Fan, Kun
    Jiang, Yu
    Ma, Shuangge
    Wang, Weiqun
    Wu, Cen
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2025,
  • [16] Adaptive modelling of gene regulatory network using Bayesian information criterion-guided sparse regression approach
    Shi, Ming
    Shen, Weiming
    Wang, Hong-Qiang
    Chong, Yanwen
    IET SYSTEMS BIOLOGY, 2016, 10 (06) : 252 - 259
  • [17] A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence
    Lou, Xiang-Yang
    Chen, Guo-Bo
    Yan, Lei
    Ma, Jennie Z.
    Zhu, Jun
    Elston, Robert C.
    Li, Ming D.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 80 (06) : 1125 - 1137
  • [18] Multiphase Turbulence Modeling Using Sparse Regression and Gene Expression Programming
    Beetham, S.
    Capecelatro, J.
    NUCLEAR TECHNOLOGY, 2023, 209 (12) : 1977 - 1986
  • [19] Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies
    Li, Yun
    O'Connor, George T.
    Dupuis, Josee
    Kolaczyk, Eric
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2015, 14 (03) : 265 - 277
  • [20] Edge-group sparse PCA for network-guided high dimensional data analysis
    Min, Wenwen
    Liu, Juan
    Zhang, Shihua
    BIOINFORMATICS, 2018, 34 (20) : 3479 - 3487