Let Omega be a symmetric generating set of a finite group Gamma. Assume that (Gamma, Omega) be such that Gamma = (Omega) and Omega satisfies the two conditions C-1: the identity element e epsilon Omega and C-2: if a epsilon Omega, then a(-1) epsilon Omega. Given (Gamma, Omega) satisfying C-1 and C-2, define a Cayley graph G = Cay(Gamma, Omega) with V(G) = Gamma and E(G) = {(x, y)a vertical bar x, y epsilon Gamma, a epsilon Omega and y = xa}. When Gamma = Z(n)= (Omega), it is called as circulant graph and denoted by Cir(n, Omega). In this paper, we give a survey about the results on dominating sets in Cayley graphs and circulant graphs. (C) 2017 Kalasalingam University. Production and Hosting by Elsevier B.Y.
机构:
Univ Ljubljana, FMF, Jadranska 19, Ljubljana 1000, Slovenia
Univ Primorska, IAM, Muzejski Trg 2, Koper 6000, SloveniaUniv Ljubljana, FMF, Jadranska 19, Ljubljana 1000, Slovenia
Estelyi, Istvan
Pisanski, Tomaz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, FMF, Jadranska 19, Ljubljana 1000, Slovenia
Univ Primorska, IAM, Muzejski Trg 2, Koper 6000, Slovenia
Univ Primorska, FAMNIT, Glagoljaska 8, Koper 6000, SloveniaUniv Ljubljana, FMF, Jadranska 19, Ljubljana 1000, Slovenia
Pisanski, Tomaz
ELECTRONIC JOURNAL OF COMBINATORICS,
2016,
23
(03):
机构:
Department of Control Sci. and Eng., Huazhong Univ. of Sci. and Technol., Wuhan 430074, ChinaDepartment of Control Sci. and Eng., Huazhong Univ. of Sci. and Technol., Wuhan 430074, China
Wang, S.
Li, X.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Control Sci. and Eng., Huazhong Univ. of Sci. and Technol., Wuhan 430074, ChinaDepartment of Control Sci. and Eng., Huazhong Univ. of Sci. and Technol., Wuhan 430074, China
机构:
Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R ChinaUniv Sci & Technol China, Hefei 230026, Anhui, Peoples R China
Guo, W.
Lytkina, D., V
论文数: 0引用数: 0
h-index: 0
机构:
Siberian State Univ Telecommun & Informat Sci, Ul Kirova 86, Novosibirsk 630102, Russia
Novosibirsk State Univ, Ul Pirogova 1, Novosibirsk 630090, RussiaUniv Sci & Technol China, Hefei 230026, Anhui, Peoples R China
Lytkina, D., V
Mazurov, V. D.
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State Univ, Ul Pirogova 1, Novosibirsk 630090, Russia
Sobolev Inst Math, Pr Akad Koptyuga 4, Novosibirsk 630090, RussiaUniv Sci & Technol China, Hefei 230026, Anhui, Peoples R China
Mazurov, V. D.
Revin, D. O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
Novosibirsk State Univ, Ul Pirogova 1, Novosibirsk 630090, Russia
Sobolev Inst Math, Pr Akad Koptyuga 4, Novosibirsk 630090, RussiaUniv Sci & Technol China, Hefei 230026, Anhui, Peoples R China