Future cryogenic switchgear technologies for superconducting power systems

被引:4
|
作者
Xu, C. [1 ]
Saluja, R. [1 ]
Damle, T. [1 ]
Graber, L. [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
SECONDARY IONIZATION COEFFICIENTS; BREAKDOWN POTENTIALS; MONATOMIC GASES;
D O I
10.1088/1757-899X/279/1/012012
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces cryogenic switchgear that is needed for protection and control purposes in future multi-terminal superconducting power systems. Implementation of cryogenic switchgear is expected to improve system reliability and minimize overall volume and weight, but such switchgear is not available yet. Design of cryogenic switchgear begins by referring to conventional circuit breakers, a brief review of state-of-the-art switchgear technologies is presented. Then, promising cryogenic interruption media are identified and analysed with respect to physical and dielectric properties. Finally, we propose several cryogenic circuit breaker designs for potential aerospace, marine and terrestrial applications. Actuation mechanism for cryogenic switchgear is also investigated.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Future power supply technologies
    Schlenk, M
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1169 - 1172
  • [42] The Future of Vacuum Switchgear
    Falkingham, Leslie T.
    [J]. 2017 4TH INTERNATIONAL CONFERENCE ON ELECTRIC POWER EQUIPMENT-SWITCHING TECHNOLOGY (ICEPE-ST), 2017, : 80 - 84
  • [43] Cryogenic systems of SuperKEKB final focusing superconducting magnets
    Zong, Zhanguo
    Ohuchi, Norihito
    Kawai, Masanori
    Aoki, Kazuyuki
    Oki, Toshiyuki
    Wang, Xudong
    Arimoto, Yasushi
    Kondou, Yoshinari
    Aoki, Kanae
    Nakamura, Shu
    Yamaoka, Hiroshi
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2024, 1058
  • [44] The Influence of Cryogenic Temperature on Characteristics of Superconducting Maglev Systems
    Osipov, Maksim
    Starikovskii, Aleksander
    Abin, Dmitrii
    Pokrovskii, Sergey
    Anischenko, IrMa
    Rudnev, Igor
    [J]. 15TH CRYOGENICS 2019 IIR INTERNATIONAL CONFERENCE, 2019, : 357 - 362
  • [45] Fiber Optic Cryogenic Sensors for Superconducting Magnets and Superconducting Power Transmission lines at CERN
    Chiuchiolo, A.
    Bajko, M.
    Perez, J. C.
    Bajas, H.
    Consales, M.
    Giordano, M.
    Breglio, G.
    Palmieri, L.
    Cusano, A.
    [J]. SECOND INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS, 2014, 9286
  • [46] Enhancement of Power System Capacity with Existing Switchgear using Superconducting Fault Current Limiter
    Biswas, Apurbo
    Khan, Md. Elias
    Islam, Md. Rafiqul
    [J]. 2013 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2013,
  • [47] Cryogenic fluid dynamics for DC superconducting power transmission line
    Sasaki, Atsushi
    Hamabe, Makoto
    Famakinwa, Tosin
    Yamaguchi, Satarou
    Radovinsky, Alexey
    Okumura, Haruhiko
    Emoto, Masahiko
    Toyota, Toshihiro
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) : 1748 - 1751
  • [48] Dielectric properties of cryogenic gas mixtures for superconducting power applications
    Cheetham, P.
    Park, C.
    Kim, C. H.
    Graber, L.
    Pamidi, S. V.
    [J]. ADVANCES IN CRYOGENIC ENGINEERING, 2017, 278
  • [49] Insulation design of cryogenic bushing for superconducting electric power applications
    Koo, J. Y.
    Lee, Y. J.
    Shin, W. J.
    Kim, Y. H.
    Kim, J. T.
    Lee, B. W.
    Lee, S. H.
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 484 : 338 - 342
  • [50] Superconducting Receiver Technologies Supporting ALMA and Future Prospects
    Uzawa, Y.
    Fujii, Y.
    Kojima, T.
    Kroug, M.
    Shan, W.
    Ezaki, S.
    Miyachi, A.
    Kiuchi, H.
    Gonzalez, A.
    [J]. RADIO SCIENCE, 2021, 56 (05)