On-site H2O2 electrogeneration at a CoS2-based air-diffusion cathode for the electrochemical degradation of organic pollutants

被引:51
|
作者
Ridruejo, Carlota [1 ]
Alcaide, Francisco [2 ]
Alvarez, Garbine [2 ]
Brillas, Enric [1 ]
Sires, Ignasi [1 ]
机构
[1] Univ Barcelona, Fac Quim, Dept Quim Fis, Lab Electroquim Mat & Medi Ambient, Marti i Franques 1-11, E-08028 Barcelona, Spain
[2] IK4 CIDETEC, Mat Energy Unit, Energy Storage Area, Paseo Miramon 196, San Sebastian 20014, Spain
关键词
CoS2; EAOPs; Hydrogen peroxide; Gas-diffusion electrode; Oxygen reduction reaction; Tetracaine; ADVANCED OXIDATION PROCESSES; BORON-DOPED DIAMOND; RETICULATED VITREOUS CARBON; ELECTRO-FENTON DEGRADATION; OXYGEN REDUCTION REACTION; HYDROGEN-PEROXIDE; PHOTOELECTRO-FENTON; HERBICIDE MECOPROP; GRAPHITE FELT; WASTE-WATER;
D O I
10.1016/j.jelechem.2017.09.010
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This work reports, for the first time, the manufacture and use of an air-diffusion cathode containing CoS2 nanoparticles to enhance the H2O2 electrogeneration. Hydrothermal synthesis allowed the formation of crystalline CoS2 with pyrite structure, either unsupported or supported on carbon nanotubes. Both kinds of catalysts were characterized by X-ray diffraction and FE-SEM combined with energy dispersive X-ray analysis. The use of carbon nanotubes as support led to a remarkable enhancement of the CoS2 stability, as deduced from cyclic voltammetry analysis. The electrochemical activity of the CoS2-based materials towards the oxygen reduction reaction (ORR) in acidic medium was examined by potentiodynamic techniques using a rotating disk electrode. Both catalysts showed activity towards the ORR, being predominant the two electron pathway to form H2O2 as main product. A novel CoS2-on-carbon nanotubes catalyzed air-diffusion cathode, as well as an uncatalyzed one made for comparison, was manufactured to electrogenerate H2O2 under galvanostatic conditions in an undivided two-electrode cell. A concentration of 56.9 mM was found with the former cathode at 100 mA cm(-2), much > 32.0 mM found with the uncatalyzed cathode. This informs about the high performance of the CoS2 nanoparticles to promote the two-electron ORR. Finally, the treatment of aqueous solutions of the anaesthetic tetracaine at pH 3.0 and 100 mA cm(-2) by electro-oxidation and photoelectro-Fenton processes demonstrated the viability of the manufactured CoS2-based cathode for water treatment.
引用
收藏
页码:364 / 371
页数:8
相关论文
共 50 条
  • [31] Electrosynthesis of H2O2 from O2 in gas diffusion electrodes for the preparation of organic peracids and the complex of H2O2 with urea
    Kolyagin, G. A.
    Kornienko, V. L.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (02) : 185 - 189
  • [32] Electrosynthesis of H2O2 from O2 in gas diffusion electrodes for the preparation of organic peracids and the complex of H2O2 with urea
    G. A. Kolyagin
    V. L. Kornienko
    Russian Journal of Electrochemistry, 2015, 51 : 185 - 189
  • [33] Activated carbon as effective cathode material in iron-free Electro-Fenton process: Integrated H2O2 electrogeneration, activation, and pollutants adsorption
    Zhou, Wei
    Rajic, Ljiljana
    Chen, Long
    Kou, Kaikai
    Ding, Yani
    Meng, Xiaoxiao
    Wang, Yan
    Mulaw, Biruk
    Gao, Jihui
    Qin, Yukun
    Alshawabkeh, Akram N.
    ELECTROCHIMICA ACTA, 2019, 296 : 317 - 326
  • [34] Graphene based nanocomposites for electrochemical detection of H2o2
    Yuvashree, S.
    Balavijayalakshmi, J.
    MATERIALS TODAY-PROCEEDINGS, 2019, 18 : 1740 - 1745
  • [35] Evaluation of the Reactivity of Organic Pollutants during O3/H2O2 Process
    Uslu, Merih Otker
    Rahman, Mohammad Feisal
    Jasim, Saad Y.
    Yanful, Ernest K.
    Biswas, Nihar
    WATER AIR AND SOIL POLLUTION, 2012, 223 (06): : 3173 - 3180
  • [36] Evaluation of the Reactivity of Organic Pollutants during O3/H2O2 Process
    Merih Otker Uslu
    Mohammad Feisal Rahman
    Saad Y. Jasim
    Ernest K. Yanful
    Nihar Biswas
    Water, Air, & Soil Pollution, 2012, 223 : 3173 - 3180
  • [37] The electrochemical degradation of chlorophenols by anodic oxidation in the presence of electrogenerated H2O2
    Pirvu, C
    Brillas, E
    Radovici, O
    Banu, A
    REVISTA DE CHIMIE, 2004, 55 (06): : 430 - 434
  • [38] Constructing efficient WO3-FPC system for photoelectrochemical H2O2 production and organic pollutants degradation
    Ye, Fei
    Wang, Tian
    Quan, Xie
    Yu, Hongtao
    Chen, Shuo
    CHEMICAL ENGINEERING JOURNAL, 2020, 389
  • [39] Solar-driven on-site H2O2 generation and tandem photo-Fenton reaction on a triphase interface for rapid organic pollutant degradation
    Ju, Yujun
    Li, Hua
    Wang, Ze
    Liu, Hanwen
    Huo, Shuhui
    Jiang, Shan
    Duan, Sicong
    Yao, Yonggang
    Lu, Xiaoquan
    Chen, Fengjuan
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [40] H2O2/periodate (IO4-): a novel advanced oxidation technology for the degradation of refractory organic pollutants
    Chadi, Nor Elhouda
    Merouani, Slimane
    Hamdaoui, Oualid
    Bouhelassa, Mohammed
    Ashokkumar, Muthupandian
    ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 2019, 5 (06) : 1113 - 1123