Whispering gallery mode temperature sensor of liquid microresonastor

被引:63
|
作者
Liu, Zhihai [1 ]
Liu, Lu [1 ]
Zhu, Zongda [1 ]
Zhang, Yu [1 ,2 ]
Wei, Yong [1 ]
Zhang, Xiaonan [1 ]
Zhao, Enming [1 ]
Zhang, Yaxun [1 ]
Yang, Jun [1 ]
Yuan, Libo [1 ]
机构
[1] Harbin Engn Univ, Key Lab In Fiber Integrated Opt, Minist Educ China, Harbin 150001, Peoples R China
[2] Swinburne Univ Technol, Ctr Microphoton, POB 218, Hawthorn, Vic 3122, Australia
基金
中国国家自然科学基金;
关键词
GLASS MICROSPHERE; RESONATOR; RESONANCES; DROPLET; FIBER;
D O I
10.1364/OL.41.004649
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose and demonstrate a whispering gallery mode (WGM) resonance-based temperature sensor, where the microresonator is made of a DCM (2-[2-[4-(dimethylamino) phenyl]ethenyl]-6-methyl-4H-pyran-4-ylidene)-doped oil droplet (a liquid material) immersed in the water solution. The oil droplet is trapped, controlled, and located by a dual-fiber optical tweezers, which prevents the deformation of the liquid droplet. We excite the fluorescence and lasing in the oil droplet and measure the shifts of the resonance wavelength at different temperatures. The results show that the resonance wavelength redshifts when the temperature increases. The testing sensitivity is 0.377 nm/degrees C in the temperature range 25 degrees C-45 degrees C. The results of the photobleaching testing of the dye indicate that measured errors can be reduced by reducing the measured time. As far as we know, this is the first time a WGM temperature sensor with a liquid state microcavity has been proposed. Compared with the solid microresonator, the utilization of the liquid microresonator improves the thermal sensitivity and provides the possibility of sensing in liquid samples or integrating into the chemical analyzers and microfluidic systems. (C) 2016 Optical Society of America
引用
收藏
页码:4649 / 4652
页数:4
相关论文
共 50 条
  • [41] Dispersion mapping of a whispering gallery mode robust polariton at room temperature
    Chen, Zhiyang
    Zheng, Huying
    Zhu, Hai
    Huang, Ying
    Tang, Ziying
    Wang, Yaqi
    Wei, Haiyuan
    Wang, Xianghu
    Shen, Yan
    Gui, Xuchun
    [J]. OSA CONTINUUM, 2020, 3 (08) : 2053 - 2061
  • [42] Simultaneous measurement of bidirectional magnetic field and temperature with a dual-channel sensor based on the whispering gallery mode
    Zhang, Chencheng
    Pu, Shengli
    Liu, Weinan
    Hao, Zijian
    Xu, Tengfei
    Duan, Simiao
    Fu, Jiaqi
    [J]. OPTICS EXPRESS, 2024, 32 (11): : 19541 - 19551
  • [43] Enhancing Whispering Gallery Mode Biosensing
    Vollmer, Frank
    [J]. 2013 15TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2013), 2013,
  • [44] Whispering gallery mode pressure sensing
    Weigel, T.
    Esen, C.
    Schweiger, G.
    Ostendorf, A.
    [J]. OPTICAL SENSING AND DETECTION II, 2012, 8439
  • [45] Enhanced whispering gallery mode sensors
    Li, Cheng
    Teimourpour, M. H.
    McLeod, Euan
    Su, Judith
    [J]. CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XIX, 2018, 10629
  • [46] Whispering gallery mode diamond resonator
    Ilchenko, V. S.
    Bennett, A. M.
    Santini, P.
    Savchenkov, A. A.
    Matsko, A. B.
    Maleki, L.
    [J]. OPTICS LETTERS, 2013, 38 (21) : 4320 - 4323
  • [47] Temperature measurements using a microoptical sensor based on whispering gallery modes
    Guan, G.
    Arnold, S.
    Otugen, M. V.
    [J]. AIAA JOURNAL, 2006, 44 (10) : 2385 - 2389
  • [48] Whispering Gallery Mode microresonators for biosensing
    Soria, Silvia
    Berneschi, Simone
    Lunelli, Lorenzo
    Conti, Gualtiero Nunzi
    Pasquardini, Laura
    Pederzolli, Cecilia
    Righini, Giancarlo
    [J]. SMART & ADAPTIVE OPTICS, 2013, 82 : 55 - +
  • [49] Surface whispering-gallery mode
    Yang, J. J.
    Huang, M.
    Yu, J.
    Lan, Y. Z.
    [J]. EPL, 2011, 96 (05)
  • [50] Whispering Gallery Mode Optical Gyroscope
    Liang, Wei
    Ilchenko, Vladimir
    Eliyahu, Danny
    Dale, Elijah
    Savchenkov, Anatoliy
    Matsko, Andrey
    Maleki, Lute
    [J]. 2016 3RD IEEE INTERNATIONAL SYMPOSIUM ON INERTIAL SENSORS AND SYSTEMS, 2016, : 89 - 92