Image matting for fusion of multi-focus images in dynamic scenes

被引:259
|
作者
Li, Shutao [1 ]
Kang, Xudong [1 ]
Hu, Jianwen [1 ]
Yang, Bin [1 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-focus image fusion; Image matting; Dynamic scenes; Morphological filtering; Focus information; LOW DEPTH; SEGMENTATION; PERFORMANCE; TRANSFORM;
D O I
10.1016/j.inffus.2011.07.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the problem of fusing multi-focus images in dynamic scenes. The proposed approach consists of three main steps: first, the focus information of each source image obtained by morphological filtering is used to get the rough segmentation result which is one of the inputs of image matting. Then, image matting technique is applied to obtain the accurate focused region of each source image. Finally, the focused regions are combined together to construct the fused image. Through image matting, the proposed fusion algorithm combines the focus information and the correlations between nearby pixels together, and therefore tends to obtain more accurate fusion result. Experimental results demonstrate the superiority of the proposed method over traditional multi-focus image fusion methods, especially for those images in dynamic scenes. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 162
页数:16
相关论文
共 50 条
  • [21] Optimal fusion method for multi-focus images
    Wen, Jianting
    Gong, Haifeng
    Zhang, Bing
    MIPPR 2007: MULTISPECTRAL IMAGE PROCESSING, 2007, 6787
  • [22] Dense Multi-focus Fusion Net: A Deep Unsupervised Convolutional Network for Multi-focus Image Fusion
    Mustafa, Hafiz Tayyab
    Liu, Fanghui
    Yang, Jie
    Khan, Zubair
    Huang, Qiao
    ARTIFICIAL INTELLIGENCEAND SOFT COMPUTING, PT I, 2019, 11508 : 153 - 163
  • [23] Multi-focus Image Fusion Using Image Morphology
    Disha, Kakaiya
    Kandoriya, Karshan
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2016, 16 (05): : 118 - 122
  • [24] Salience preserving multi-focus image fusion
    Hong, Richang
    Wang, Chao
    Ge, Yong
    Wang, Meng
    Wu, Xiuqing
    Zhang, Rong
    2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 1663 - 1666
  • [25] A lightweight scheme for multi-focus image fusion
    Jin, Xin
    Hou, Jingyu
    Nie, Rencan
    Yao, Shaowen
    Zhou, Dongming
    Jiang, Qian
    He, Kangjian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (18) : 23501 - 23527
  • [26] Spatial Domain Multi-Focus Image Fusion
    Toprak, Ahmet Nusret
    Aslantas, Voysel
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [27] Compressive Sensing Multi-focus Image Fusion
    Cheng, Fang
    Yang, Bin
    Huang, Zhiwei
    PATTERN RECOGNITION (CCPR 2014), PT II, 2014, 484 : 107 - 116
  • [28] Multi-focus image fusion in wavelet domain
    Wang, Wei-Wei
    Shui, Peng-Lang
    Song, Guo-Xiang
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2004, 26 (05):
  • [29] A Novel Framework for Multi-focus Image Fusion
    Bhatnagar, Gaurav
    Wu, Q. M. Jonathan
    2013 FOURTH NATIONAL CONFERENCE ON COMPUTER VISION, PATTERN RECOGNITION, IMAGE PROCESSING AND GRAPHICS (NCVPRIPG), 2013,
  • [30] Multi-focus image fusion based on NLEMD
    Jing, Zhao
    Bu, Xu
    Fei, Liu
    2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2008, : 2266 - 2270