Remote Sensing Image Classification Exploiting Multiple Kernel Learning

被引:15
|
作者
Cusano, Claudio [1 ]
Napoletano, Paolo [2 ]
Schettini, Raimondo [2 ]
机构
[1] Univ Pavia, Dept Elect Comp & Biomed Engn, I-27100 Pavia, Italy
[2] Univ Milano Bicocca, Dept Informat Syst & Commun, I-20126 Milan, Italy
关键词
Multiple kernel learning (MKL); remote sensing image classification; SCENE;
D O I
10.1109/LGRS.2015.2476365
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a strategy for land use classification, which exploits multiple kernel learning (MKL) to automatically determine a suitable combination of a set of features without requiring any heuristic knowledge about the classification task. We present a novel procedure that allows MKL to achieve good performance in the case of small training sets. Experimental results on publicly available data sets demonstrate the feasibility of the proposed approach.
引用
收藏
页码:2331 / 2335
页数:5
相关论文
共 50 条
  • [31] LINEAR DISCRIMINANT MULTIPLE KERNEL LEARNING FOR MULTISPECTRAL IMAGE CLASSIFICATION
    Gu, Yanfeng
    Wang, Qingwang
    Liu, Pigang
    Zuo, Deshan
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5052 - 5056
  • [32] Hyperspectral image classification based on multiple kernel mutual learning
    Cui, Binge
    Zhong, Liwei
    Yin, Bei
    Ren, Guangbo
    Lu, Yan
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2019, 99 : 113 - 122
  • [33] Learning Relevant Image Features With Multiple-Kernel Classification
    Tuia, Devis
    Camps-Valls, Gustavo
    Matasci, Giona
    Kanevski, Mikhail
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10): : 3780 - 3791
  • [34] Multiple similarities based kernel subspace learning for image classification
    Yan, W
    Liu, QS
    Lu, HQ
    Ma, SD
    [J]. COMPUTER VISION - ACCV 2006, PT II, 2006, 3852 : 244 - 253
  • [35] A Deep Learning Hierarchical Ensemble for Remote Sensing Image Classification
    Hwang, Seung-Yeon
    Kim, Jeong-Joon
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (02): : 2649 - 2663
  • [36] A NOVEL DICTIONARY LEARNING METHOD FOR REMOTE SENSING IMAGE CLASSIFICATION
    Yang, Michael Ying
    Jiang, Tao
    Al-Shaikhli, Saif
    Rosenhahn, Bodo
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4364 - 4367
  • [37] Active Learning Methods for Classification of Hyperspectral Remote Sensing Image
    Ding, Sheng
    Li, Bo
    Fu, Xiaowei
    [J]. INTELLIGENT COMPUTING METHODOLOGIES, 2014, 8589 : 484 - 491
  • [38] Active Learning in the Spatial Domain for Remote Sensing Image Classification
    Stumpf, Andre
    Lachiche, Nicolas
    Malet, Jean-Philippe
    Kerle, Norman
    Puissant, Anne
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05): : 2492 - 2507
  • [39] Unsupervised Quaternion Feature Learning for Remote Sensing Image Classification
    Risojevic, Vladimir
    Babic, Zdenka
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (04) : 1521 - 1531
  • [40] Deep Learning Analysis for Big Remote Sensing Image Classification
    Chebbi, Imen
    Mellouli, Nedra
    Lamolle, Myriam
    Farah, Imed
    [J]. KDIR: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL 1: KDIR, 2019, : 355 - 362