CO Hydrogenation on Pd(111): Competition between Fischer-Tropsch and Oxygenate Synthesis Pathways

被引:28
|
作者
Lin, Sen [1 ]
Ma, Jianyi [2 ]
Ye, Xinxin [1 ]
Xie, Daiqian [3 ]
Guo, Hua [4 ]
机构
[1] Fuzhou Univ, Res Inst Photocatalysis, Fujian Prov Key Lab Photocatalysis, State Key Lab Breeding Base, Fuzhou 350002, Peoples R China
[2] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China
[3] Nanjing Univ, Sch Chem & Chem Engn, Inst Theoret & Computat Chem, Key Lab Mesoscop Chem, Nanjing 210093, Jiangsu, Peoples R China
[4] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2013年 / 117卷 / 28期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; METHANOL SYNTHESIS; PALLADIUM CATALYSTS; CARBON-MONOXIDE; 1ST PRINCIPLES; SYNTHESIS GAS; DECOMPOSITION; ADSORPTION; SURFACE;
D O I
10.1021/jp404509v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydrogenation of CO on Pd can lead to methane via the Fischer-Tropsch process and methanol via oxygenate synthesis. Despite the fact that the former is thermodynamically favored, the catalysis is mostly selective to the latter. Given the importance of methanol synthesis in both industry applications and fundamental understanding of heterogeneous catalysis, it is highly desirable to understand the mechanism and selectivity of CO hydrogenation on Pd catalysts. In this work, this process is studied on Pd(111) using periodic plane-wave density functional theory and kinetic Monte Carlo simulations. The barriers and reaction energies for the methanol and methane formation are systematically explored. Our results suggest that methanol is formed via CO* -> CHO* -> HCOH* -> CH2OH* -> CH3OH*. The HCOH* and CH2OH* intermediates, which feature a C-O single bond, were found to possess the lowest barriers for C-O bond fission, but they are still higher than those in methanol formation, thus confirming the kinetic origin of the experimentally observed selectivity of the Pd catalysts toward methanol.
引用
收藏
页码:14667 / 14676
页数:10
相关论文
共 50 条
  • [21] Fischer-Tropsch principles of CO-hydrogenation on cobalt catalysts.
    Schulz, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U565 - U565
  • [22] Structural requirements and reaction pathways for the Fischer-Tropsch synthesis.
    Krishnamoorthy, S
    Li, S
    Pinna, D
    Tu, M
    Iglesia, E
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : U574 - U574
  • [23] A DFT Study of CO Hydrogenation on Graphene Oxide: Effects of Adding Mn on Fischer-Tropsch Synthesis
    Bakhtiari, Hanieh
    Tafreshi, Saeedeh Sarabadani
    Torkashvand, Mostafa
    Abdouss, Majid
    de Leeuw, Nora H.
    CATALYSTS, 2024, 14 (05)
  • [24] KINETICS OF THE FISCHER-TROPSCH SYNTHESIS
    DIXIT, RS
    TAVLARIDES, LL
    INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1983, 22 (01): : 1 - 9
  • [25] THE KINETICS OF THE FISCHER-TROPSCH SYNTHESIS
    WOJCIECHOWSKI, BW
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1988, 30 (04): : 629 - 702
  • [26] MECHANISM OF THE FISCHER-TROPSCH SYNTHESIS
    BILOEN, P
    RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS-JOURNAL OF THE ROYAL NETHERLANDS CHEMICAL SOCIETY, 1980, 99 (02): : 33 - 38
  • [27] Hydrogenation of propene on cobalt Fischer-Tropsch catalysts
    Aaserud, C
    Hilmen, AM
    Bergene, E
    Eric, S
    Schanke, D
    Holmen, A
    CATALYSIS LETTERS, 2004, 94 (3-4) : 171 - 176
  • [28] Fischer-Tropsch synthesis in microchannels
    Almeida, L. C.
    Echave, F. J.
    Sanz, O.
    Centeno, M. A.
    Arzamendi, G.
    Gandia, L. M.
    Sousa-Aguiar, E. F.
    Odriozola, J. A.
    Montes, M.
    CHEMICAL ENGINEERING JOURNAL, 2011, 167 (2-3) : 536 - 544
  • [29] Kinetics of the Fischer-Tropsch synthesis
    Wojciechowski, B.W.
    Catalysis reviews, 1988, 30 (04): : 629 - 702
  • [30] Reactors for Fischer-Tropsch synthesis
    Guettel, Robert
    Kunz, Ullrich
    Turek, Thomas
    CHEMICAL ENGINEERING & TECHNOLOGY, 2008, 31 (05) : 746 - 754