CO Hydrogenation on Pd(111): Competition between Fischer-Tropsch and Oxygenate Synthesis Pathways

被引:28
|
作者
Lin, Sen [1 ]
Ma, Jianyi [2 ]
Ye, Xinxin [1 ]
Xie, Daiqian [3 ]
Guo, Hua [4 ]
机构
[1] Fuzhou Univ, Res Inst Photocatalysis, Fujian Prov Key Lab Photocatalysis, State Key Lab Breeding Base, Fuzhou 350002, Peoples R China
[2] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China
[3] Nanjing Univ, Sch Chem & Chem Engn, Inst Theoret & Computat Chem, Key Lab Mesoscop Chem, Nanjing 210093, Jiangsu, Peoples R China
[4] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2013年 / 117卷 / 28期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; METHANOL SYNTHESIS; PALLADIUM CATALYSTS; CARBON-MONOXIDE; 1ST PRINCIPLES; SYNTHESIS GAS; DECOMPOSITION; ADSORPTION; SURFACE;
D O I
10.1021/jp404509v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydrogenation of CO on Pd can lead to methane via the Fischer-Tropsch process and methanol via oxygenate synthesis. Despite the fact that the former is thermodynamically favored, the catalysis is mostly selective to the latter. Given the importance of methanol synthesis in both industry applications and fundamental understanding of heterogeneous catalysis, it is highly desirable to understand the mechanism and selectivity of CO hydrogenation on Pd catalysts. In this work, this process is studied on Pd(111) using periodic plane-wave density functional theory and kinetic Monte Carlo simulations. The barriers and reaction energies for the methanol and methane formation are systematically explored. Our results suggest that methanol is formed via CO* -> CHO* -> HCOH* -> CH2OH* -> CH3OH*. The HCOH* and CH2OH* intermediates, which feature a C-O single bond, were found to possess the lowest barriers for C-O bond fission, but they are still higher than those in methanol formation, thus confirming the kinetic origin of the experimentally observed selectivity of the Pd catalysts toward methanol.
引用
收藏
页码:14667 / 14676
页数:10
相关论文
共 50 条
  • [1] SEPARATE PATHWAYS FOR OXYGENATE AND HYDROCARBON SYNTHESIS IN THE FISCHER-TROPSCH REACTION
    MILLER, D
    MOSKOVITS, M
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (26) : 9250 - 9252
  • [2] Fischer-Tropsch synthesis: Evidence for the oxygenate mechanism
    Davis, Burtron H.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [3] CO activation pathways and the mechanism of Fischer-Tropsch synthesis
    Ojeda, Manuel
    Nabar, Rahul
    Nilekar, Anand U.
    Ishikawa, Akio
    Mavrikakis, Manos
    Iglesia, Enrique
    JOURNAL OF CATALYSIS, 2010, 272 (02) : 287 - 297
  • [4] Microkinetics of oxygenate formation in the Fischer-Tropsch reaction
    van Santen, Rutger A.
    Ghouri, Minhaj
    Hensen, Emiel M. J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (21) : 10041 - 10058
  • [5] Membrane application in Fischer-Tropsch synthesis to enhance CO2 hydrogenation
    Rohde, MP
    Unruh, D
    Schaub, G
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (25) : 9653 - 9658
  • [6] Fischer-Tropsch principles of co-hydrogenation on iron catalysts
    Schulz, H
    Riedel, T
    Schaub, G
    TOPICS IN CATALYSIS, 2005, 32 (3-4) : 117 - 124
  • [7] CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts
    Zhang, YQ
    Jacobs, G
    Sparks, DE
    Dry, ME
    Davis, BH
    CATALYSIS TODAY, 2002, 71 (3-4) : 411 - 418
  • [8] Mechanistic pathways for oxygen removal on Pt-doped Co(111) in the Fischer-Tropsch reaction
    Govender, Sandeeran
    Gambu, Thobani G.
    van Heerden, Tracey
    van Steen, Eric
    CATALYSIS TODAY, 2020, 342 : 142 - 151
  • [9] Hydrogenation of Fischer-Tropsch Synthetic Crude
    Lamprecht, Delanie
    ENERGY & FUELS, 2007, 21 (05) : 2509 - 2513
  • [10] Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer-Tropsch Synthesis
    Chen, Wei
    Filot, Ivo A. W.
    Pestman, Robert
    Hensen, Ernie J. M.
    ACS CATALYSIS, 2017, 7 (12): : 8061 - 8071