3D brain tumor segmentation using fuzzy classification and deformable models

被引:0
|
作者
Khotanlou, H
Atif, J
Colliot, O
Bloch, I
机构
[1] Ecole Natl Super Telecommun Bretagne, GET, Dept TSI, CNRS,UMR 5142, F-75634 Paris 13, France
[2] McGill Univ, MNI, McConnell Brain Imaging Ctr, Montreal, PQ H3A 2B4, Canada
来源
FUZZY LOGIC AND APPLICATIONS | 2006年 / 3849卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new method that automatically detects and segments brain tumors in 3D MR images is presented. An initial detection is performed by a fuzzy possibilistic clustering technique and morphological operations, while a deformable model is used to achieve a precise segmentation. This method has been successfully applied on five 3D images with tumors of different sizes and different locations, showing that the combination of region-based and contour-based methods improves the segmentation of brain tumors.
引用
下载
收藏
页码:312 / 318
页数:7
相关论文
共 50 条
  • [21] 3D automated segmentation and structural analysis of vascular trees using deformable models
    Magee, D
    Bulpitt, A
    Berry, E
    IEEE WORKSHOP ON VARIATIONAL AND LEVEL SET METHODS IN COMPUTER VISION, PROCEEDINGS, 2001, : 119 - 126
  • [22] Automated 3D segmentation of brain tumor using visual saliency
    Banerjee, Subhashis
    Mitra, Sushmita
    Shankar, B. Uma
    INFORMATION SCIENCES, 2018, 424 : 337 - 353
  • [23] Brain Tumor Segmentation Using 3D Generative Adversarial Networks
    Li, Yitong
    Chen, Yue
    Shi, Y.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [24] Segmentation of Brain Tumor Using a 3D Generative Adversarial Network
    Kalejahi, Behnam Kiani
    Meshgini, Saeed
    Danishvar, Sebelan
    DIAGNOSTICS, 2023, 13 (21)
  • [25] 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization
    Myronenko, Andriy
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 311 - 320
  • [26] Multimodal Brain Tumor Segmentation Using 3D Convolutional Networks
    Rodriguez Colmeiro, R. G.
    Verrastro, C. A.
    Grosges, T.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 226 - 240
  • [27] Brain Tumor Segmentation Using 3D Convolutional Neural Network
    Liang, Kaisheng
    Lu, Wenlian
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 199 - 207
  • [28] Coupling CRFs and deformable models for 3D medical image segmentation
    Tsechpenakis, Gabriel
    Wang, Jianhua
    Mayer, Brandon
    Metaxas, Dimitris
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 2519 - +
  • [29] Cylindrical echocardiographic image segmentation based on 3D deformable models
    Montagnat, J
    Delingette, H
    Malandain, G
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI'99, PROCEEDINGS, 1999, 1679 : 168 - 175
  • [30] Abdomen Segmentation in 3D Fetal Ultrasound Using CNN-powered Deformable Models
    Schmidt-Richberg, Alexander
    Brosch, Tom
    Schadewaldt, Nicole
    Klinder, Tobias
    Cavallaro, Angelo
    Salim, Ibtisam
    Roundhill, David
    Papageorghiou, Aris
    Lorenz, Cristian
    FETAL, INFANT AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2017, 10554 : 52 - 61