Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans

被引:49
|
作者
Komalapriya, Chandrasekaran [1 ,2 ]
Kaloriti, Despoina [2 ]
Tillmann, Anna T. [2 ]
Yin, Zhikang [2 ]
Herrero-de-Dios, Carmen [2 ]
Jacobsen, Mette D. [2 ]
Belmonte, Rodrigo C. [2 ]
Cameron, Gary [3 ]
Haynes, Ken [4 ]
Grebogi, Celso [1 ]
de Moura, Alessandro P. S. [1 ]
Gow, Neil A. R. [2 ]
Thiel, Marco [1 ]
Quinn, Janet [5 ]
Brown, Alistair J. P. [2 ]
Romano, M. Carmen [1 ,2 ]
机构
[1] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen, Scotland
[2] Univ Aberdeen, Sch Med Sci, Aberdeen, Scotland
[3] Univ Aberdeen, Sch Med & Dent, Aberdeen, Scotland
[4] Univ Exeter, Coll Life & Environm Sci, Exeter, Devon, England
[5] Newcastle Univ, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
来源
PLOS ONE | 2015年 / 10卷 / 09期
基金
英国惠康基金; 英国生物技术与生命科学研究理事会; 欧洲研究理事会;
关键词
ACTIVATED PROTEIN-KINASE; HYDROGEN-PEROXIDE; TRANSCRIPTION FACTOR; ALTERNATIVE-PATHWAYS; SIGNALING PATHWAYS; OSMOTIC-STRESS; GLUTATHIONE; CELL; MAPK; H2O2;
D O I
10.1371/journal.pone.0137750
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The major fungal pathogen of humans, Candida albicans, mounts robust responses to oxidative stress that are critical for its virulence. These responses counteract the reactive oxygen species (ROS) that are generated by host immune cells in an attempt to kill the invading fungus. Knowledge of the dynamical processes that instigate C. albicans oxidative stress responses is required for a proper understanding of fungus-host interactions. Therefore, we have adopted an interdisciplinary approach to explore the dynamical responses of C. albicans to hydrogen peroxide (H2O2). Our deterministic mathematical model integrates two major oxidative stress signalling pathways (Cap1 and Hog1 pathways) with the three major antioxidant systems (catalase, glutathione and thioredoxin systems) and the pentose phosphate pathway, which provides reducing equivalents required for oxidative stress adaptation. The model encapsulates existing knowledge of these systems with new genomic, proteomic, transcriptomic, molecular and cellular datasets. Our integrative approach predicts the existence of alternative states for the key regulators Cap1 and Hog1, thereby suggesting novel regulatory behaviours during oxidative stress. The model reproduces both existing and new experimental observations under a variety of scenarios. Time-and dose-dependent predictions of the oxidative stress responses for both wild type and mutant cells have highlighted the different temporal contributions of the various antioxidant systems during oxidative stress adaptation, indicating that catalase plays a critical role immediately following stress imposition. This is the first model to encapsulate the dynamics of the transcriptional response alongside the redox kinetics of the major antioxidant systems during H2O2 stress in C. albicans.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans
    Dantas, Alessandra da Silva
    Day, Alison
    Ikeh, Melanie
    Kos, Iaroslava
    Achan, Beatrice
    Quinn, Janet
    [J]. BIOMOLECULES, 2015, 5 (01): : 142 - 165
  • [2] Glutathione peroxidases are required for normal resistance to oxidative stress in the fungal pathogen Candida albicans
    Dunker, C.
    Miramon, P.
    Schild, L.
    Jacobsen, I. D.
    Hube, B.
    [J]. INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2012, 302 : 17 - 17
  • [3] Glucose Promotes Stress Resistance in the Fungal Pathogen Candida albicans
    Rodaki, Alexandra
    Bohovych, Iryna M.
    Enjalbert, Brice
    Young, Tim
    Odds, Frank C.
    Gow, Neil A. R.
    Brown, Alistair J. P.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2009, 20 (22) : 4845 - 4855
  • [4] Modelling the Regulation of Thermal Adaptation in Candida albicans, a Major Fungal Pathogen of Humans
    Leach, Michelle D.
    Tyc, Katarzyna M.
    Brown, Alistair J. P.
    Klipp, Edda
    [J]. PLOS ONE, 2012, 7 (03):
  • [5] The oxidative stress response of the opportunistic fungal pathogen Candida glabrata
    Briones-Martin-Del-Campo, Marcela
    Orta-Zavalza, Emmanuel
    Juarez-Cepeda, Jacqueline
    Gutierrez-Escobedo, Guadalupe
    Canas-Villamar, Israel
    Castano, Irene
    De Las Penas, Alejandro
    [J]. REVISTA IBEROAMERICANA DE MICOLOGIA, 2014, 31 (01): : 67 - 71
  • [6] Chemogenomic Profiling of the Fungal Pathogen Candida albicans
    Chen, Yaolin
    Mallick, Jaideep
    Maqnas, Alaa
    Sun, Yuan
    Choudhury, Baharul I.
    Cote, Pierre
    Yan, Lan
    Ni, Ting-jun-hong
    Li, Yan
    Zhang, Dazhi
    Rodriguez-Ortiz, Roberto
    Lv, Quan-zhen
    Jiang, Yuan-ying
    Whiteway, Malcolm
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2018, 62 (02)
  • [7] Interactions of the fungal pathogen Candida albicans with the host
    Rupp, Steffen
    [J]. FUTURE MICROBIOLOGY, 2007, 2 (02) : 141 - 151
  • [8] Candida albicans, a major human fungal pathogen
    Joon Kim
    Peter Sudbery
    [J]. The Journal of Microbiology, 2011, 49
  • [9] Is the oral fungal pathogen Candida albicans a cariogen?
    Pereira, D. F. A.
    Seneviratne, C. J.
    Koga-Ito, C. Y.
    Samaranayake, L. P.
    [J]. ORAL DISEASES, 2018, 24 (04) : 518 - 526
  • [10] Targeting adhesion in fungal pathogen Candida albicans
    Martin, Harlei
    Kavanagh, Kevin
    Velasco-Torrijos, Trinidad
    [J]. FUTURE MEDICINAL CHEMISTRY, 2021, 13 (03) : 313 - 334