Semi-supervised Learning of Caricature Pattern from Manifold Regularization

被引:0
|
作者
Liu, Junfa [1 ]
Chen, Yiqiang [1 ]
Xie, Jinjing [1 ]
Gao, Xingyu [1 ]
Gao, Wen [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
关键词
NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic caricature synthesis is to transform the input face to an exaggerated one. It is becoming an interesting research topic, but it remains an open issue to specify the caricature's pattern for the input face. This paper proposed a novel pattern prediction method based on MR (manifold regularization), which comprises three steps. Firstly, we learn the caricature pattern by manifold dimension reduction, and select some low dimensional caricature pattern as the labels for corresponsive true faces. Secondly, manifold regularization is performed to build a semi-supervised regression between true faces and the pattern labels. In the third step of offline phase, the input face is mapped to a pattern label by the learnt regressive model, and the pattern label is further transformed to caricature parameters by a locally linear reconstruction algorithm. This approach takes advantage of manifold structure lying in both true faces and caricatures. Experiments show that, low dimensional manifold represents the caricature pattern well and the semi-supervised regressive model from manifold regularization can predict the target caricature pattern successfully.
引用
收藏
页码:413 / 424
页数:12
相关论文
共 50 条
  • [1] Pointwise manifold regularization for semi-supervised learning
    Wang, Yunyun
    Han, Jiao
    Shen, Yating
    Xue, Hui
    [J]. FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (01)
  • [2] Pointwise manifold regularization for semi-supervised learning
    Yunyun Wang
    Jiao Han
    Yating Shen
    Hui Xue
    [J]. Frontiers of Computer Science, 2021, 15
  • [3] Semi-supervised learning via manifold regularization
    Mao, Yu
    Zhou, Yan-Quan
    Li, Rui-Fan
    Wang, Xiao-Jie
    Zhong, Yi-Xin
    [J]. Journal of China Universities of Posts and Telecommunications, 2012, 19 (06): : 79 - 88
  • [4] Semi-supervised learning via manifold regularization
    MAO Yu
    ZHOU Yan-quan
    LI Rui-fan
    WANG Xiao-jie
    ZHONG Yi-xin
    [J]. The Journal of China Universities of Posts and Telecommunications, 2012, (06) : 79 - 88
  • [5] MANIFOLD REGULARIZATION FOR SEMI-SUPERVISED SEQUENTIAL LEARNING
    Moh, Yvonne
    Buhmann, Joachim M.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1617 - 1620
  • [6] Semi-supervised learning via manifold regularization
    MAO Yu
    ZHOU Yan-quan
    LI Rui-fan
    WANG Xiao-jie
    ZHONG Yi-xin
    [J]. The Journal of China Universities of Posts and Telecommunications, 2012, 19 (06) - 88
  • [7] Pointwise manifold regularization for semi-supervised learning
    Yunyun WANG
    Jiao HAN
    Yating SHEN
    Hui XUE
    [J]. Frontiers of Computer Science, 2021, (01) - 83
  • [8] Manifold regularization and semi-supervised learning: Some theoretical analyses
    Niyogi, Partha
    [J]. Journal of Machine Learning Research, 2013, 14 : 1229 - 1250
  • [9] Manifold Regularization and Semi-supervised Learning: Some Theoretical Analyses
    Niyogi, Partha
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1229 - 1250
  • [10] Graph Convolution Networks with manifold regularization for semi-supervised learning
    Kejani, M. Tavassoli
    Dornaika, F.
    Talebi, H.
    [J]. NEURAL NETWORKS, 2020, 127 : 160 - 167