Graph Convolution Networks with manifold regularization for semi-supervised learning

被引:39
|
作者
Kejani, M. Tavassoli [1 ]
Dornaika, F. [2 ,3 ]
Talebi, H. [4 ]
机构
[1] Univ Isfahan, Esfahan, Iran
[2] Univ Basque Country, UPV EHU, San Sebastian, Spain
[3] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
[4] Amirkabir Univ Technol, Tehran, Iran
关键词
Graph-based semisupervised learning; Graph Convolution Networks (GCN); Label prediction; Manifold regularization; Semisupervised image classification; FRAMEWORK;
D O I
10.1016/j.neunet.2020.04.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent times, Graph Convolution Networks (GCN) have been proposed as a powerful tool for graph-based semi-supervised learning. In this paper, we introduce a model that enhances label propagation of Graph Convolution Networks (GCN). More precisely, we propose GCNs with Manifold Regularization (GCNMR). The objective function of the proposed GCNMR is composed by a supervised term and an unsupervised term. The supervised term enforces the fitting term between the predicted labels and the known labels. The unsupervised term imposes the smoothness of the predicted labels of the whole data samples. By learning a Graph Convolution Network with the proposed objective function, we are able to derive a more powerful semi-supervised learning. The proposed model retains the advantages of the classic GCN, yet it can improve it with no increase in time complexity. Experiments on three public image datasets show that the proposed model is superior to the GCN and several competing existing graph-based semi-supervised learning methods. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:160 / 167
页数:8
相关论文
共 50 条
  • [1] Pointwise manifold regularization for semi-supervised learning
    Wang, Yunyun
    Han, Jiao
    Shen, Yating
    Xue, Hui
    [J]. FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (01)
  • [2] Semi-supervised manifold regularization with adaptive graph construction
    Wang, Yunyun
    Meng, Yan
    Li, Yun
    Chen, Songcan
    Fu, Zhenyong
    Xue, Hui
    [J]. PATTERN RECOGNITION LETTERS, 2017, 98 : 90 - 95
  • [3] MANIFOLD REGULARIZATION FOR SEMI-SUPERVISED SEQUENTIAL LEARNING
    Moh, Yvonne
    Buhmann, Joachim M.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1617 - 1620
  • [4] Semi-supervised learning via manifold regularization
    MAO Yu
    ZHOU Yan-quan
    LI Rui-fan
    WANG Xiao-jie
    ZHONG Yi-xin
    [J]. The Journal of China Universities of Posts and Telecommunications, 2012, (06) : 79 - 88
  • [5] Pointwise manifold regularization for semi-supervised learning
    Yunyun Wang
    Jiao Han
    Yating Shen
    Hui Xue
    [J]. Frontiers of Computer Science, 2021, 15
  • [6] Semi-supervised learning via manifold regularization
    MAO Yu
    ZHOU Yan-quan
    LI Rui-fan
    WANG Xiao-jie
    ZHONG Yi-xin
    [J]. The Journal of China Universities of Posts and Telecommunications, 2012, 19 (06) - 88
  • [7] Pointwise manifold regularization for semi-supervised learning
    Yunyun WANG
    Jiao HAN
    Yating SHEN
    Hui XUE
    [J]. Frontiers of Computer Science., 2021, (01) - 83
  • [8] Manifold Correlation Graph for Semi-Supervised Learning
    Valem, Lucas Pascotti
    Pedronette, Daniel C. G.
    Breve, Fabricio
    Guilherme, Ivan Rizzo
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [9] Linear Manifold Regularization with Adaptive Graph for Semi-supervised Dimensionality Reduction
    Xiong, Kai
    Nie, Feiping
    Han, Junwei
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3147 - 3153
  • [10] CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
    Li, Junnan
    Xiong, Caiming
    Hoi, Steven C. H.
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9455 - 9464