Informational connectivity: identifying synchronized discriminability of multi-voxel patterns across the brain

被引:64
|
作者
Coutanche, Marc N. [1 ]
Thompson-Schill, Sharon L. [1 ]
机构
[1] Univ Penn, Dept Psychol, Philadelphia, PA 19104 USA
来源
关键词
MVPA; fMRI; method; multivariate; networks; connectivity; pattern discriminability; VENTRAL TEMPORAL CORTEX; FMRI DATA; REPRESENTATIONS; OBJECTS; HUMANS; STREAM; FACES; LOBE;
D O I
10.3389/fnhum.2013.00015
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The fluctuations in a brain region's activation levels over a functional magnetic resonance imaging (fMRI) time-course are used in functional connectivity (FC) to identify networks with synchronous responses. It is increasingly recognized that multi-voxel activity patterns contain information that cannot be extracted from univariate activation levels. Here we present a novel analysis method that quantifies regions' synchrony in multi-voxel activity pattern discriminability, rather than univariate activation, across a timeseries. We introduce a measure of multi-voxel pattern discriminability at each time-point, which is then used to identify regions that share synchronous time-courses of condition-specific multi-voxel information. This method has the sensitivity and access to distributed information that multi-voxel pattern analysis enjoys, allowing it to be applied to data from conditions not separable by univariate responses. We demonstrate this by analyzing data collected while people viewed four different types of man-made objects (typically not separable by univariate analyses) using both FC and informational connectivity (IC) methods. IC reveals networks of object-processing regions that are not detectable using FC. The IC results support prior findings and hypotheses about object processing. This new method allows investigators to ask questions that are not addressable through typical FC, just as multi-voxel pattern analysis (MVPA) has added new research avenues to those addressable with the general linear model (GLM).
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Dynamic spatiotemporal patterns of brain connectivity reorganize across development
    Vohryzek, Jakub
    Griffa, Alessandra
    Mullier, Emeline
    Friedrichs-Maeder, Cecilia
    Sandini, Corrado
    Schaer, Marie
    Eliez, Stephan
    Hagmann, Patric
    NETWORK NEUROSCIENCE, 2020, 4 (01) : 115 - 133
  • [32] ALTERED MULTI-VOXEL PREFRONTAL AND MESOLIMBIC PATTERNS ASSOCIATED WITH REWARD PROCESSING IN SCHIZOPHRENIA: EVIDENCE FROM REPRESENTATIONAL SIMILARITY ANALYSIS
    Yan, Chao
    Li, Su
    Wang, Yi
    Yi, Zhenghui
    Zhang, Jian-ye
    Lv, Qin-yu
    Lui, Simon S. Y.
    Cheung, Eric E. F.
    Chan, Raymond C. K.
    SCHIZOPHRENIA BULLETIN, 2017, 43 : S236 - S236
  • [33] Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
    Emily S Finn
    Xilin Shen
    Dustin Scheinost
    Monica D Rosenberg
    Jessica Huang
    Marvin M Chun
    Xenophon Papademetris
    R Todd Constable
    Nature Neuroscience, 2015, 18 : 1664 - 1671
  • [34] Identifying Diurnal Variability of Brain Connectivity Patterns Using Graph Theory
    Farahani, Farzad V.
    Fafrowicz, Magdalena
    Karwowski, Waldemar
    Bohaterewicz, Bartosz
    Sobczak, Anna Maria
    Ceglarek, Anna
    Zyrkowska, Aleksandra
    Ostrogorska, Monika
    Sikora-Wachowicz, Barbara
    Lewandowska, Koryna
    Oginska, Halszka
    Beres, Anna
    Hubalewska-Mazgaj, Magdalena
    Marek, Tadeusz
    BRAIN SCIENCES, 2021, 11 (01) : 1 - 20
  • [35] Identifying Individuals Using EEG-Based Brain Connectivity Patterns
    Hussain, Hadri
    Ting, Chee-Ming
    Jalil, M. A.
    Ray, Kanad
    Rizvi, S. Z. H.
    Kavikumar, J.
    Noman, Fuad M.
    Zubaidi, A. L. Ahmad
    Low, Yin Fen
    Sh-Hussain
    Mahmud, Mufti
    Kaiser, M. Shamim
    Ali, J.
    BRAIN INFORMATICS, BI 2021, 2021, 12960 : 124 - 135
  • [36] Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
    Finn, Emily S.
    Shen, Xilin
    Scheinost, Dustin
    Rosenberg, Monica D.
    Huang, Jessica
    Chun, Marvin M.
    Papademetris, Xenophon
    Constable, R. Todd
    NATURE NEUROSCIENCE, 2015, 18 (11) : 1664 - 1671
  • [37] Single-voxel and multi-voxel spectroscopy yield comparable results in the normal juvenile canine brain when using 3 Tesla magnetic resonance imaging
    Lee, Alison M.
    Beasley, Michaela J.
    Barrett, Emerald D.
    James, Judy R.
    Gambino, Jennifer M.
    VETERINARY RADIOLOGY & ULTRASOUND, 2018, 59 (05) : 577 - 586
  • [38] Brain connectomics improve prediction of 1-year decreased quality of life in breast cancer: A multi-voxel pattern analysis
    Liang, Mu Zi
    Tang, Ying
    Chen, Peng
    Tang, Xiao Na
    Knobf, M. Tish
    Hu, Guang Yun
    Sun, Zhe
    Liu, Mei Ling
    Yu, Yuan Liang
    Ye, Zeng Jie
    EUROPEAN JOURNAL OF ONCOLOGY NURSING, 2024, 68
  • [39] Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis
    Kusano, Toshiki
    Kurashige, Hiroki
    Nambu, Isao
    Moriguchi, Yoshiya
    Hanakawa, Takashi
    Wada, Yasuhiro
    Osu, Rieko
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 4290 - 4293
  • [40] Commentary: Functional connectome fingerprint: identifying individuals using patterns of brain connectivity
    Biazoli, Claudinei E., Jr.
    Salum, Giovanni A.
    Pan, Pedro M.
    Zugman, Andre
    Amaro, Edson, Jr.
    Rohde, Luis A.
    Miguel, Euripedes C.
    Jackowski, Andrea P.
    Bressan, Rodrigo A.
    Sato, Joao R.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2017, 11