Ternary universal sums of generalized polygonal numbers

被引:6
|
作者
Ju, Jangwon [1 ]
Oh, Byeong-Kweon [1 ,2 ]
Seo, Bangnam [2 ]
机构
[1] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Generalized polygonal numbers; ternary universal sums;
D O I
10.1142/S1793042119500350
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An integer of the form P m (x) = (m - 2)(x2)- ( m - 4 )x/2 (m >= 3), for some integer x, is called ,b a generalized polygonal number of order m. A ternary sum Phi(a,b,c)(i,j,k)(x,y,z) = aP(i)+2(x)+ bP(j)+2(y) + cp(k+2)(z) of generalized polygonal numbers, for some positive integers a, b,c and some integers 1 <= i <= j <= k, is said to be universal over Z if for any nonnegative integer n, the equation Phi(a,b,c)(i,j,k)(x,y,z) = n has an integer solution x, y, z. In this paper, we prove the universalities of 17 ternary sums of generalized polygonal numbers, which was conjectured by Sun.
引用
收藏
页码:655 / 675
页数:21
相关论文
共 50 条