共 50 条
Ternary universal sums of generalized polygonal numbers
被引:6
|作者:
Ju, Jangwon
[1
]
Oh, Byeong-Kweon
[1
,2
]
Seo, Bangnam
[2
]
机构:
[1] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
基金:
新加坡国家研究基金会;
关键词:
Generalized polygonal numbers;
ternary universal sums;
D O I:
10.1142/S1793042119500350
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
An integer of the form P m (x) = (m - 2)(x2)- ( m - 4 )x/2 (m >= 3), for some integer x, is called ,b a generalized polygonal number of order m. A ternary sum Phi(a,b,c)(i,j,k)(x,y,z) = aP(i)+2(x)+ bP(j)+2(y) + cp(k+2)(z) of generalized polygonal numbers, for some positive integers a, b,c and some integers 1 <= i <= j <= k, is said to be universal over Z if for any nonnegative integer n, the equation Phi(a,b,c)(i,j,k)(x,y,z) = n has an integer solution x, y, z. In this paper, we prove the universalities of 17 ternary sums of generalized polygonal numbers, which was conjectured by Sun.
引用
下载
收藏
页码:655 / 675
页数:21
相关论文