Silicon Electrodes for Li-Ion Batteries. Addressing the Challenges through Coordination Chemistry

被引:49
|
作者
Devic, Thomas [1 ]
Lestriez, Bernard [1 ]
Roue, Lionel [2 ]
机构
[1] Univ Nantes, CNRS, Inst Mat Jean Rouxel IMN, UMR 6502, 2 Rue Houssiniere,BP 32229, F-44322 Nantes 3, France
[2] INRS, Ctr Energie, Mat, Telecommun EMT, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada
来源
ACS ENERGY LETTERS | 2019年 / 4卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
METAL-ORGANIC FRAMEWORKS; SI-BASED ANODES; ALGINATE; BINDERS; COMPLEXES; COMPOSITE; NETWORK; SURFACE; MOFS;
D O I
10.1021/acsenergylett.8b02433
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon is considered as a promising negative electrode active material for Li-ion batteries, but its practical use is hampered by its very limited electrochemical cyclability arising from its major volume change upon cycling, which deteriorates the electrode architecture and the solid-electrolyte interphase. In this Perspective, we aim at critically discussing the opportunities offered by coordination chemistry to tackle these challenges. More precisely, we will show how the characteristics of the coordination bonds, notably their tunability, medium strength, and dynamic character, can be exploited to offer alternative paths for binding, templating, and coating Si particles in order to ultimately improve the cycle life of Si electrodes in Li-ion batteries.
引用
收藏
页码:550 / 557
页数:15
相关论文
共 50 条
  • [41] Binder-Free Electrodes and Their Application for Li-Ion Batteries
    Yuqiong Kang
    Changjian Deng
    Yuqing Chen
    Xinyi Liu
    Zheng Liang
    Tao Li
    Quan Hu
    Yun Zhao
    Nanoscale Research Letters, 15
  • [42] Vanadium diphosphides as negative electrodes for secondary Li-ion batteries
    Gillot, F.
    Menetrier, M.
    Bekaert, E.
    Dupont, L.
    Morcrette, M.
    Monconduit, L.
    Tarascon, J. M.
    JOURNAL OF POWER SOURCES, 2007, 172 (02) : 877 - 885
  • [43] Si-alloy negative electrodes for Li-ion batteries
    Obrovac, M. N.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 9 : 8 - 17
  • [44] Si(CO)y Negative Electrodes for Li-Ion Batteries
    Cao, Yidan
    Hans, Sophie
    Liese, Julia
    Werner-Zwanziger, Ulrike
    Wang, Jun
    Bennett, J. Craig
    Dunlap, R. A.
    Obrovac, M. N.
    CHEMISTRY OF MATERIALS, 2021, 33 (18) : 7386 - 7395
  • [45] The Effect of Trimethoxyboroxine on Some Positive Electrodes for Li-Ion Batteries
    Ping, P.
    Xia, X.
    Wang, Q. S.
    Sun, J. H.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (03) : A426 - A429
  • [46] The Effect of Trimethoxyboroxine on Carbonaceous Negative Electrodes for Li-Ion Batteries
    Burns, J. C.
    Xia, Xin
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (02) : A383 - A386
  • [47] Studies on the degradation of Li-ion batteries by the use of microreference electrodes
    Zhou, J.
    Notten, P. H. L.
    JOURNAL OF POWER SOURCES, 2008, 177 (02) : 553 - 560
  • [48] Multiscale modeling of nanostructured electrodes and interfaces in Li-ion batteries
    Bedrov, Dmitry
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [49] Understanding the Structure of Electrodes in Li-Ion Batteries: A Numerical Study
    Cerbelaud, Manuella
    Lestriez, Bernard
    Videcoq, Arnaud
    Ferrando, Riccardo
    Guyomard, Dominique
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (08) : A1485 - A1492
  • [50] Li-Ion Batteries
    Battaglini, John
    ADVANCED MATERIALS & PROCESSES, 2010, 168 (07): : 26 - 27