Modeling Urban Growth Using GIS and Remote Sensing

被引:22
|
作者
Luo, Jun [1 ]
Yu, Danlin [2 ]
Xin, Miao [1 ]
机构
[1] Missouri State Univ, Dept Geog Geol & Planning, Springfield, MO 65897 USA
[2] Montclair State Univ, Dept Earth & Environm Studies, Montclair, NJ 07043 USA
关键词
D O I
10.2747/1548-1603.45.4.426
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Based on remote sensing and GIS, this study models the spatial variations of urban growth patterns with a logistic geographically weighted regression (GWR) technique. Through a case study of Springfield, Missouri, the research employs both global and local logistic regression to model the probability of urban land expansion against a set of spatial and socioeconomic variables. The logistic GWR model significantly improves the global logistic regression model in three ways: (1) the local model has higher PCP (percentage correctly predicted) than the global model; (2) the local model has a smaller residual than the global model; and (3) residuals of the local model have less spatial dependence. More importantly, the local estimates of parameters enable us to investigate spatial variations in the influences of driving factors on urban growth. Based on parameter estimates of logistic GWR and using the inverse distance weighted (IDW) interpolation method, we generate a set of parameter surfaces to reveal the spatial variations of urban land expansion. The geographically weighted local analysis correctly reveals that urban growth in Springfield, Missouri is more a result of infrastructure construction, and an urban sprawl trend is observed from 1992 to 2005.
引用
收藏
页码:426 / 442
页数:17
相关论文
共 50 条
  • [31] A pattern-based definition of urban context using remote sensing and GIS
    Benza, Magdalena
    Weeks, John R.
    Stow, Douglas A.
    Lopez-Carr, David
    Clarke, Keith C.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 183 : 250 - 264
  • [32] Remote sensing of urban systems: hierarchical integration with GIS
    Dept of Geography, University of Bristol, Unviersity Road, Bristol BS8 1SS, United Kingdom
    [J]. Comput Environ Urban Syst, 3-4 (175-187):
  • [33] Assessing environmental impacts of urban growth using remote sensing
    Trinder, John
    Liu, Qingxiang
    [J]. GEO-SPATIAL INFORMATION SCIENCE, 2020, 23 (01) : 20 - 39
  • [34] The story of five MENA cities: Urban growth prediction modeling using remote sensing and video analytics
    Jaad, Ahmed
    Abdelghany, Khaled
    [J]. CITIES, 2021, 118
  • [35] Modeling winter habitat of goshawks (Accipiter gentilis) using GIS and remote sensing
    Colpaert, A
    Tornberg, R
    [J]. GEOGRAPHICAL INFORMATION - FROM RESEARCH TO APPLICATION THROUGH COOPERATION, VOLS 1 AND 2, 1996, : 447 - 456
  • [36] Soil erosion modeling using MMF model - A remote sensing and GIS perspective
    Behera P.
    Durga Rao K.H.V.
    Das K.K.
    [J]. Journal of the Indian Society of Remote Sensing, 2005, 33 (1) : 165 - 176
  • [37] Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing
    Townsend, PA
    Walsh, SJ
    [J]. GEOMORPHOLOGY, 1998, 21 (3-4) : 295 - 312
  • [38] SOIL EROSION MODELING USING MMF MODEL - A REMOTE SENSING AND GIS PERSPECTIVE
    Behera, Pallavi
    Rao, K. H. V. Durga
    Das, K. K.
    [J]. PHOTONIRVACHAK-JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2005, 33 (01): : 165 - 176
  • [39] Runoff Modeling in an Agro-Forested Watershed Using Remote Sensing and GIS
    Gupta, P. K.
    Punalekar, S.
    Panigrahy, S.
    Sonakia, A.
    Parihar, J. S.
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2012, 17 (11) : 1255 - 1267
  • [40] Land use land cover mapping and monitoring urban growth using remote sensing and GIS techniques in Mangaluru, India
    Dhanaraj, K.
    Angadi, Dasharatha P.
    [J]. GEOJOURNAL, 2022, 87 (02) : 1133 - 1159