Modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C

被引:94
|
作者
Vijayaragavan, K
Boutjdir, M
Chahine, M
机构
[1] Univ Laval, Dept Med, St Foy, PQ G1V 4G5, Canada
[2] NYU, Sch Med, New York, NY 10010 USA
[3] SUNY Hlth Sci Ctr, Vet Affairs New York Harbor Helathcare Syst, Mol & Cellular Cardiol Program, Brooklyn, NY 11203 USA
关键词
D O I
10.1152/jn.00676.2003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Voltage-gated Na+ channels (VGSC) are transmembrane proteins that are essential for the initiation and propagation of action potentials in neuronal excitability. Because neurons express a mixture of Na+ channel isoforms and protein kinase C (PKC) isozymes, the nature of which channel is being regulated by which PKC isozyme is not known. We showed that DRG VGSC Na-v 1.7 (TTX-sensitive) and Na-v 1.8 (TTX-resistant), expressed in Xenopus oocytes were differentially regulated by protein kinase A (PKA) and PKC isozymes using the two-electrode voltage-clamp method. PKA activation resulted in a dose-dependent potentiation of Na-v 1.8 currents and an attenuation of Na-v 1.7 currents. PKA-induced increases ( Na-v 1.8) and decreases (Na-v 1.7) in peak currents were not associated with shifts in voltage-dependent activation or inactivation. The PKA-mediated increase in Na-v 1.8 current amplitude was prevented by chloroquine, suggesting that cell trafficking may contribute to the changes in Na-v 1.8 current amplitudes. A dose-dependent decrease in Na-v 1.7 and Na-v 1.8 currents was observed with the PKC activators phorbol 12-myristate, 13-acetate (PMA) and phorbol 12,13-dibutyrate. PMA induced shifts in the steady-state activation of Na-v 1.7 and Na v 1.8 channels by 6.5 and 14 mV, respectively, in the depolarizing direction. The role of individual PKC isozymes in the regulation of Na-v 1.7 and Na-v 1.8 was determined using PKC-isozyme-specific peptide activators and inhibitors. The decrease in the Na-v 1.8 peak current induced by PMA was prevented by a specific epsilonPKC isozyme peptide antagonist, whereas the PMA effect on Na v 1.7 was prevented by epsilonPKC and betaIIPKC peptide inhibitors. The data showed that Na-v 1.7 and Na v 1.8 were differentially modulated by PKA and PKC. This is the first report demonstrating a functional role for epsilonPKC and betaIIPKC in the regulation of Na-v 1.7 and Na-v 1.8 Na+ channels. Identification of the particular PKC isozymes(s) that mediate the regulation of Na+ channels is essential for understanding the molecular mechanism involved in neuronal ion channel regulation in normal and pathological conditions.
引用
收藏
页码:1556 / 1569
页数:14
相关论文
共 50 条
  • [31] Biophysical properties of human Nav1.7 splice variants and their regulation by protein kinase A
    Chatelier, Aurelien
    Dahllund, Leif
    Eriksson, Anders
    Krupp, Johannes
    Chahine, Mohamed
    JOURNAL OF NEUROPHYSIOLOGY, 2008, 99 (05) : 2241 - 2250
  • [32] Antidepressants inhibit Nav1.3, Nav1.7, and Nav1.8 neuronal voltage-gated sodium channels more potently than Nav1.2 and Nav1.6 channels expressed in Xenopus oocytes
    Horishita, Takafumi
    Yanagihara, Nobuyuki
    Ueno, Susumu
    Okura, Dan
    Horishita, Reiko
    Minami, Tomoko
    Ogata, Yuichi
    Sudo, Yuka
    Uezono, Yasuhito
    Sata, Takeyoshi
    Kawasaki, Takashi
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2017, 390 (12) : 1255 - 1270
  • [33] Antidepressants inhibit Nav1.3, Nav1.7, and Nav1.8 neuronal voltage-gated sodium channels more potently than Nav1.2 and Nav1.6 channels expressed in Xenopus oocytes
    Takafumi Horishita
    Nobuyuki Yanagihara
    Susumu Ueno
    Dan Okura
    Reiko Horishita
    Tomoko Minami
    Yuichi Ogata
    Yuka Sudo
    Yasuhito Uezono
    Takeyoshi Sata
    Takashi Kawasaki
    Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390 : 1255 - 1270
  • [34] Carvacrol inhibits the neuronal voltage-gated sodium channels Nav1.2, Nav1.6, Nav1.3, Nav1.7, and Nav1.8 expressed in Xenopus oocytes with different potencies
    Horishita, Takafumi
    Ogata, Yuichi
    Horishita, Reiko
    Fukui, Ryo
    Moriwaki, Kuniaki
    Ueno, Susumu
    Yanagihara, Nobuyuki
    Uezono, Yasuhito
    Sudo, Yuka
    Minami, Kouichiro
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2020, 142 (04) : 140 - 147
  • [35] Changes in the expression of voltage-gated sodium channels Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in rat trigeminal ganglia following chronic constriction injury
    Xu, Wenhua
    Zhang, Jun
    Wang, Yuanyin
    Wang, Liecheng
    Wang, Xuxia
    NEUROREPORT, 2016, 27 (12) : 929 - 934
  • [36] Influence of combined voltage-gated sodium channel NaV1.7 and NaV1.8 inhibitors on cough in a guinea pig model
    Brozmanova, Mariana
    Buday, Tomas
    Jakusova, Janka
    Melegova, Jana
    Plevkova, Jana
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2023, 312
  • [37] Regulation of Nav1.6 and Nav1.8 peripheral nerve Na+ channels by auxiliary β-subunits
    Zhao, Juan
    O'Leary, Michael E.
    Chahine, Mohamed
    JOURNAL OF NEUROPHYSIOLOGY, 2011, 106 (02) : 608 - 619
  • [38] Tramadol as a Voltage-Gated Sodium Channel Blocker of Peripheral Sodium Channels Nav1.7 and Nav1.5
    Bok, Chan-Su
    Kim, Ryeong-Eun
    Cho, Yong-Yeon
    Choi, Jin-Sung
    BIOMOLECULES & THERAPEUTICS, 2023, 31 (02) : 168 - 175
  • [39] Drug screening reveals inhibitors of NaV1.7 sodium channels and a pain-relevant NaV1.7 variant
    Kesdogan, A.
    Raemisch, S.
    Kriegeskorte, S.
    Bott, R.
    Rolke, R.
    Koerner, J.
    Lampert, A.
    Hausmann, R.
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 : S44 - S45
  • [40] CONTRIBUTION OF NAV1.8 SODIUM CHANNELS TO RETINAL FUNCTION
    Smith, Benjamin J.
    Cote, Patrice D.
    Tremblay, Francois
    NEUROSCIENCE, 2017, 340 : 279 - 290