Thermal desorption of hydrogen from carbon nanosheets

被引:40
|
作者
Zhao, X. [1 ]
Outlaw, R. A. [1 ]
Wang, J. J. [1 ]
Zhu, M. Y. [1 ]
Smith, G. D. [1 ]
Holloway, B. C. [1 ]
机构
[1] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2006年 / 124卷 / 19期
关键词
D O I
10.1063/1.2187969
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanosheets are a unique nanostructure that, at their thinnest configuration, approach a single freestanding graphene sheet. Temperature desorption spectroscopy (TDS) has shown that the hydrogen adsorption and incorporation during growth of the nanosheets by radio frequency plasma-enhanced chemical vapor deposition are significant. A numerical peak fitting to the desorption spectra (300-1273 K) via the Polanyi-Wigner equation showed that desorption followed a second order process, presumably by the Langmuir-Hinshelwood mechanism. Six peaks provide the best fit to the TDS spectra. Surface desorption activation energies were determined to be 0.59, 0.63, and 0.65 eV for the external graphite surface layers and 0.85, 1.15, and 1.73 eV for desorption and diffusion from the bulk. In contrast to TDS data from previously studied a-C:H films [Schenk et al. J. Appl. Phys. 77, 2462 (1995)], a greater amount of hydrogen bound as sp(2) hybridized carbon was observed. A previous x-ray diffraction study of these films has shown a significant graphitic character with a crystallite dimension of L-a=10.7 nm. This result is consistent with experimental results by Raman spectroscopy that show as-grown carbon nanosheets to be crystalline as commercial graphite with a crystallite size of L-a=11 nm. Following TDS, Raman data indicate that the average crystallite increased in size to L-a=15 nm. (c) 2006 American Institute of Physics.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [21] Influence of Carbon Segregation to Dislocations on Thermal Desorption Spectrum of Hydrogen in Medium Carbon Martensitic Steels
    Cheng, Lin
    Enomoto, Masato
    Hirakami, Daisuke
    Tarui, Toshimi
    ISIJ INTERNATIONAL, 2013, 53 (01) : 131 - 138
  • [22] Thermal desorption spectroscopy of hydrogen from amorphous hydrogenated silicon
    Salyk, O
    Poruba, A
    Schauer, F
    CHEMICAL PAPERS, 1996, 50 (04) : 177 - 182
  • [23] Thermal desorption of hydrogen from the diamond C(100) surface
    Su, C
    Lin, JC
    SURFACE SCIENCE, 1998, 406 (1-3) : 149 - 166
  • [24] Thermal desorption of hydrogen from the diamond C(100) surface
    Academia Sinica, Taipei, Taiwan
    Surf Sci, 1-3 (149-166):
  • [25] Hydrogen thermal desorption spectra: insights from molecular simulation
    Prosenjak, Claudia
    Banu, Ana-Maria
    Gellan, Alistair D.
    Dueren, Tina
    DALTON TRANSACTIONS, 2012, 41 (14) : 3974 - 3984
  • [26] Molecular beam-thermal hydrogen desorption from palladium
    Lobo, R. F. M.
    Berardo, F. M. V.
    Ribeiro, J. H. F.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (04):
  • [27] TRAPPING STATE OF HYDROGEN ISOTOPES IN CARBON AND GRAPHITE INVESTIGATED BY THERMAL DESORPTION SPECTROMETRY
    Atsumi, H.
    Tanabe, T.
    Shikama, T.
    FUSION SCIENCE AND TECHNOLOGY, 2015, 67 (02) : 245 - 249
  • [28] On the kinetic analysis of the hydrogen thermal desorption spectra for graphite and advanced carbon nanomaterials
    Nechaev, Yury S.
    Alexandrova, N. M.
    Shurygina, N. A.
    Cheretaeva, A. O.
    Pisarev, A. A.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2020, 28 (02) : 147 - 149
  • [29] Numerical Modeling of Thermal Desorption Spectra of Hydrogen: A Review of Thermal Desorption Models
    Ebihara, Ken-ichi
    Kaburaki, Hideo
    ISIJ INTERNATIONAL, 2012, 52 (02) : 181 - 186
  • [30] Modelling of hydrogen thermal desorption spectra
    Lototskyy, Mykhaylo
    Denys, Roman
    Nyamsi, Serge Nyallang
    Bessarabskaia, Irina
    Yartys, Volodymyr
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (04) : 10440 - 10449