Thermal desorption of hydrogen from carbon nanosheets

被引:40
|
作者
Zhao, X. [1 ]
Outlaw, R. A. [1 ]
Wang, J. J. [1 ]
Zhu, M. Y. [1 ]
Smith, G. D. [1 ]
Holloway, B. C. [1 ]
机构
[1] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2006年 / 124卷 / 19期
关键词
D O I
10.1063/1.2187969
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanosheets are a unique nanostructure that, at their thinnest configuration, approach a single freestanding graphene sheet. Temperature desorption spectroscopy (TDS) has shown that the hydrogen adsorption and incorporation during growth of the nanosheets by radio frequency plasma-enhanced chemical vapor deposition are significant. A numerical peak fitting to the desorption spectra (300-1273 K) via the Polanyi-Wigner equation showed that desorption followed a second order process, presumably by the Langmuir-Hinshelwood mechanism. Six peaks provide the best fit to the TDS spectra. Surface desorption activation energies were determined to be 0.59, 0.63, and 0.65 eV for the external graphite surface layers and 0.85, 1.15, and 1.73 eV for desorption and diffusion from the bulk. In contrast to TDS data from previously studied a-C:H films [Schenk et al. J. Appl. Phys. 77, 2462 (1995)], a greater amount of hydrogen bound as sp(2) hybridized carbon was observed. A previous x-ray diffraction study of these films has shown a significant graphitic character with a crystallite dimension of L-a=10.7 nm. This result is consistent with experimental results by Raman spectroscopy that show as-grown carbon nanosheets to be crystalline as commercial graphite with a crystallite size of L-a=11 nm. Following TDS, Raman data indicate that the average crystallite increased in size to L-a=15 nm. (c) 2006 American Institute of Physics.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] Thermal desorption of hydrogen from carbon and graphite at elevated temperatures
    Atsumi, H.
    Takemura, Y.
    Konishi, T.
    Tanabe, T.
    Shikama, T.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S963 - S966
  • [2] Thermal desorption of hydrogen from graphane
    L. A. Openov
    A. I. Podlivaev
    Technical Physics Letters, 2010, 36 : 31 - 33
  • [3] Thermal desorption of hydrogen from graphane
    Openov, L. A.
    Podlivaev, A. I.
    TECHNICAL PHYSICS LETTERS, 2010, 36 (01) : 31 - 33
  • [4] THERMAL DESORPTION OF HYDROGEN ELECTROCHEMICALLY ADSORBED ON A CARBON ELECTRODE
    WARREN, W
    KUMMER, JT
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (05) : 724 - 726
  • [5] DESORPTION STUDIES OF HYDROGEN AND CARBON-MONOXIDE FROM NICKEL SURFACES USING THERMAL-DESORPTION SPECTROSCOPY
    CABRERA, AL
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1990, 8 (04): : 3229 - 3236
  • [6] Modelling of thermal desorption of hydrogen from metals
    Turnbull, A
    Hutchings, RB
    Ferriss, DH
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1997, 238 (02): : 317 - 328
  • [7] Thermal desorption of hydrogen from 4340 steel
    Ganeff, P
    Foley, R
    42ND MECHANICAL WORKING AND STEEL PROCESSING CONFERENCE PROCEEDINGS, 2000, 38 : 145 - 155
  • [8] Modelling of thermal desorption of hydrogen from metals
    Cent for Materials Measurement and, Technology, Middlesex, United Kingdom
    Mater Sci Eng A Struct Mater Prop Microstruct Process, 2 (317-328):
  • [9] THERMAL DESORPTION OF HYDROGEN FROM PLATINUM FILMS
    STEPHAN, JJ
    PONEC, V
    SACHTLER, WMH
    JOURNAL OF CATALYSIS, 1975, 37 (01) : 81 - 90
  • [10] Studying the thermal desorption of hydrogen in some carbon nanostructures and graphite
    Nechaev, Yu S.
    Alexandrova, N. M.
    Cheretaeva, A. O.
    Kuznetsov, V. L.
    Oechsner, A.
    Kostikova, E. K.
    Zaika, Yu, V
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (46) : 25030 - 25042