The k-path vertex cover in Cartesian product graphs and complete bipartite graphs

被引:6
|
作者
Li, Zhao [1 ]
Zuo, Liancui [1 ]
机构
[1] Tianjin Normal Univ, Coll Math Sci, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
k-path vertex cover; Cartesian product; Strong product; Lexicographic product; Complete bipartite graph; APPROXIMATION ALGORITHM; INDEPENDENCE NUMBER; P-3; PROBLEM; DISSOCIATION NUMBER;
D O I
10.1016/j.amc.2018.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G and a positive integer k, a subset S of vertices of G is called a k-path vertex cover if S intersects all paths of order k in G. The cardinality of a minimum k-path vertex cover is denoted by psi(k)(G), and called the k-path vertex cover number of G. In this paper, we study some Cartesian product graphs and give several estimations and the exact values of psi(k)(G). (c) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 50 条
  • [1] Minimum k-Path Vertex Cover in Cartesian Product Graphs
    Huiling YIN
    Binbin HAO
    Xiaoyan SU
    Jingrong CHEN
    [J]. Journal of Mathematical Research with Applications, 2021, 41 (04) : 340 - 348
  • [2] The k-path vertex cover of rooted product graphs
    Jakovac, Marko
    [J]. DISCRETE APPLIED MATHEMATICS, 2015, 187 : 111 - 119
  • [3] The k-path vertex cover: General bounds and chordal graphs
    Bujtas, Csilla
    Jakovac, Marko
    Tuza, Zsolt
    [J]. NETWORKS, 2022, 80 (01) : 63 - 76
  • [4] PTAS for the minimum k-path connected vertex cover problem in unit disk graphs
    Liu, Xianliang
    Lu, Hongliang
    Wang, Wei
    Wu, Weili
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (02) : 449 - 458
  • [5] PTAS for the minimum k-path connected vertex cover problem in unit disk graphs
    Xianliang Liu
    Hongliang Lu
    Wei Wang
    Weili Wu
    [J]. Journal of Global Optimization, 2013, 56 : 449 - 458
  • [6] PTAS for Minimum k-Path Connected Vertex Cover in Growth-Bounded Graphs
    Chu, Yan
    Fan, Jianxi
    Liu, Wenjun
    Lin, Cheng-Kuan
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2014, PT I, 2014, 8630 : 114 - 126
  • [7] On the vertex k-path cover
    Bresar, Bostjan
    Jakovac, Marko
    Katrenic, Jan
    Semanisin, Gabriel
    Taranenko, Andrej
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 1943 - 1949
  • [8] A polynomial-time algorithm of finding a minimum k-path vertex cover and a maximum k-path packing in some graphs
    D. B. Mokeev
    D. S. Malyshev
    [J]. Optimization Letters, 2020, 14 : 1317 - 1322
  • [9] A polynomial-time algorithm of finding a minimum k-path vertex cover and a maximum k-path packing in some graphs
    Mokeev, D. B.
    Malyshev, D. S.
    [J]. OPTIMIZATION LETTERS, 2020, 14 (06) : 1317 - 1322
  • [10] On a relation between k-path partition and k-path vertex cover
    Brause, Christoph
    Krivos-Bellus, Rastislav
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 223 : 28 - 38