Magnetron sputtered LSC thin films for solid oxide fuel cell application

被引:9
|
作者
Smolyanskiy, E. A. [1 ]
Linnik, S. A. [1 ]
Ionov, I. V. [2 ]
Shipilova, A. V. [2 ]
Semenov, V. A. [2 ]
Lauk, A. L. [1 ]
Solovyev, A. A. [1 ,2 ]
机构
[1] Natl Res Tomsk Polytech Univ, 30 Lenin Ave, Tomsk 634050, Russia
[2] Inst High Current Elect SB RAS, 2-3 Akad Ave, Tomsk 634055, Russia
基金
俄罗斯科学基金会;
关键词
CATHODES; INTERLAYER; STABILITY;
D O I
10.1088/1742-6596/1115/3/032080
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, La0.6Sr0.4CoO3-delta (LSC) thin films were deposited by pulsed DC magnetron sputtering at oblique angle of the LSC target. The effect of post-annealing temperature in the range of 600-1000 degrees C on the film crystalline structure was investigated. The phase composition, crystalline structure and surface morphology of the films were determined using X-ray diffraction, scanning electron microscopy and atomic force microscopy, respectively. Anode-supported solid oxide fuel cells (SOFCs) with bi-layered thin-film yttria-stabilized zirconia (YSZ) / gadolinium-doped ceria (GDC) electrolyte and an LSC thin film interlayer were fabricated. Polarization curves were measured in the temperature range from 700 to 800 degrees C. It was shown that the LSC interlayer improves SOFC power density. Our results demonstrate that magnetron sputtering provides a low-temperature synthesis route for realizing thin LSC films for intermediate-temperature SOFCs.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Deposition, evaluation and application of sputtered zinc oxide thin films
    Wacogne, B
    Roe, MP
    Pannell, CN
    INTERNATIONAL JOURNAL OF OPTOELECTRONICS, 1995, 10 (01): : 9 - 18
  • [32] Sputtered Ni coating on ferritic stainless steel for solid oxide fuel cell interconnect application
    Geng, Shujiang
    Wang, Qian
    Wang, Wen
    Zhu, Shenglong
    Wang, Fuhui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (01) : 916 - 920
  • [33] Strontium Diffusion in Magnetron Sputtered Gadolinia-Doped Ceria Thin Film Barrier Coatings for Solid Oxide Fuel Cells
    Sonderby, Steffen
    Popa, Petru Lunca
    Lu, Jun
    Christensen, Bjarke Holl
    Almtoft, Klaus Pagh
    Nielsen, Lars Pleth
    Eklund, Per
    ADVANCED ENERGY MATERIALS, 2013, 3 (07) : 923 - 929
  • [34] Investigations on the crystallisation properties of RF magnetron sputtered indium tin oxide thin films
    Thilakan, P
    Minarini, C
    Loreti, S
    Terzini, E
    THIN SOLID FILMS, 2001, 388 (1-2) : 34 - 40
  • [35] Thin films for micro solid oxide fuel cells
    Beckel, D.
    Bieberle-Huetter, A.
    Harvey, A.
    Infortuna, A.
    Muecke, U. P.
    Prestat, M.
    Rupp, J. L. M.
    Gauckler, L. J.
    JOURNAL OF POWER SOURCES, 2007, 173 (01) : 325 - 345
  • [36] A review on the application of magnetron sputtering technologies for solid oxide fuel cell in reduction of the operating temperature
    Pan, Yue
    Wang, Jian
    Lu, Zhibin
    Wang, Ruixiang
    Xu, Zhifeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1179 - 1193
  • [37] REACTIVE MAGNETRON SPUTTERED ZIRCONIUM-OXIDE AND ZIRCONIUM SILICON-OXIDE THIN-FILMS
    RUSSAK, MA
    JAHNES, CV
    KATZ, EP
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (03): : 1248 - 1253
  • [38] Guidelines for Thin Film Usage and Microfabrication for Solid Oxide Fuel Cell Application
    Bieberle-Huetter, A.
    Evans, A.
    Galinski, H.
    Rupp, J. L. M.
    Ryll, T.
    Scherrer, B.
    Toelke, B. R.
    Gauckler, L. J.
    SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 925 - 930
  • [39] Solid oxide fuel cell anode surface modification by magnetron sputtering of NiO/YSZ thin film
    Solovyev, A. A.
    Shipilova, A. V.
    Ionov, I. V.
    Smolyanskiy, E. A.
    Lauk, A. L.
    Kovalchuk, A. N.
    Remnev, G. E.
    Lebedynskiy, A. M.
    5TH INTERNATIONAL CONGRESS ON ENERGY FLUXES AND RADIATION EFFECTS 2016, 2017, 830
  • [40] Magnetron sputtered NbN thin films and mechanical properties
    Han, ZH
    Hu, XP
    Tian, JW
    Li, GY
    Gu, MY
    SURFACE & COATINGS TECHNOLOGY, 2004, 179 (2-3): : 188 - 192