Harnessing electronic medical records to advance research on multiple sclerosis

被引:16
|
作者
Damotte, Vincent [1 ]
Lizee, Antoine [1 ,3 ]
Tremblay, Matthew [1 ,2 ]
Agrawal, Alisha [1 ]
Khankhanian, Pouya [1 ,4 ]
Santaniello, Adam [1 ]
Gomez, Refujia [1 ]
Lincoln, Robin [1 ]
Tang, Wendy [1 ]
Chen, Tiffany [1 ]
Lee, Nelson [5 ]
Villoslada, Pablo [1 ,6 ]
Hollenbach, Jill A. [1 ]
Bevan, Carolyn D. [1 ]
Graves, Jennifer [1 ]
Bove, Riley [1 ]
Goodin, Douglas S. [1 ]
Green, Ari J. [1 ]
Baranzini, Sergio E. [1 ]
Cree, Bruce A. C. [1 ]
Henry, Roland G. [1 ]
Hauser, Stephen L. [1 ]
Gelfand, Jeffrey M. [1 ]
Gourraud, Pierre-Antoine [1 ,3 ]
机构
[1] Univ Calif San Francisco, Sch Med, Dept Neurol, MS Genet, 675 Nelson Rising Lane,Box 3206, San Francisco, CA 94158 USA
[2] Univ Connecticut, Ctr Hlth, Dept Neurol, John Dempsey Hosp, Farmington, CT USA
[3] Univ Nantes, INSERM, Ctr Rech Transplantat & Immunol, UMR 1064,ATIP Avenir,Equipe 5, Nantes, France
[4] Univ Penn, Ctr Neuroengn & Therapeut, Philadelphia, PA 19104 USA
[5] Univ Calif San Francisco, Informat Technol, San Francisco, CA 94143 USA
[6] Hosp Clin Barcelona, IDIBAPS, Barcelona, Spain
关键词
Electronic medical records; natural language processing; HEALTH RECORDS; DISABILITY;
D O I
10.1177/1352458517747407
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Electronic medical records (EMR) data are increasingly used in research, but no studies have yet evaluated similarity between EMR and research-quality data and between characteristics of an EMR multiple sclerosis (MS) population and known natural MS history. Objectives: To (1) identify MS patients in an EMR system and extract clinical data, (2) compare EMR-extracted data with gold-standard research data, and (3) compare EMR MS population characteristics to expected MS natural history. Methods: Algorithms were implemented to identify MS patients from the University of California San Francisco EMR, de-identify the data and extract clinical variables. EMR-extracted data were compared to research cohort data in a subset of patients. Results: We identified 4142 MS patients via search of the EMR and extracted their clinical data with good accuracy. EMR and research values showed good concordance for Expanded Disability Status Scale (EDSS), timed-25-foot walk, and subtype. We replicated several expected MS epidemiological features from MS natural history including higher EDSS for progressive versus relapsing-remitting patients and for male versus female patients and increased EDSS with age at examination and disease duration. Conclusion: Large real-world cohorts algorithmically extracted from the EMR can expand opportunities for MS clinical research.
引用
收藏
页码:408 / 418
页数:11
相关论文
共 50 条
  • [31] Identifying individuals with multiple sclerosis in an electronic medical record
    Krysko, Kristen M.
    Ivers, Noah M.
    Young, Jacqueline
    O'Connor, Paul
    Tu, Karen
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2015, 21 (02) : 217 - 224
  • [32] Harnessing the Electronic Health Record to Advance Integrated Care
    Zerden, Lisa de Saxe
    Lombardi, Brianna M.
    Richman, Erica L.
    Fraher, Erin P.
    Shoenbill, Kimberly Ann
    [J]. FAMILIES SYSTEMS & HEALTH, 2021, 39 (01) : 77 - 88
  • [33] Documentation of Advance Directives and Code Status in Electronic Medical Records to Honor Goals of Care
    Weaver, Meaghann S.
    Anderson, Betty
    Cole, Anne
    Lyon, Maureen E.
    [J]. JOURNAL OF PALLIATIVE CARE, 2020, 35 (04) : 217 - 220
  • [34] Leveraging Electronic Health Records Data to Predict Multiple Sclerosis Activity
    Ahuja, Y. V.
    Kim, N.
    Liang, L.
    Cai, T.
    Dahal, K.
    Seyok, T.
    Lin, C.
    Finan, S.
    Liao, K.
    Savova, G.
    Chitnis, T.
    Cai, T.
    Xia, Z.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2021, 27 (1_SUPPL) : 15 - 16
  • [35] HARNESSING TECHNOLOGY TO ADVANCE BEHAVIORAL MEDICINE RESEARCH
    Low, Carissa A.
    Muldoon, Matthew F.
    Moskowitz, Judith T.
    Hunter, John F.
    Rollman, Bruce L.
    [J]. PSYCHOSOMATIC MEDICINE, 2018, 80 (03) : A138 - A138
  • [36] Leveraging Electronic Health Records for Modeling Disease Activity in Multiple Sclerosis
    Xia, Zongqi
    Chibnik, Lori
    Secor, Elizabeth
    De Jager, Philip
    [J]. NEUROLOGY, 2013, 80
  • [37] Modeling Disease Severity in Multiple Sclerosis Using Electronic Health Records
    Xia, Zongqi
    Secor, Elizabeth
    Chibnik, Lori B.
    Bove, Riley M.
    Cheng, Suchun
    Chitnis, Tanuja
    Cagan, Andrew
    Gainer, Vivian S.
    Chen, Pei J.
    Liao, Katherine P.
    Shaw, Stanley Y.
    Ananthakrishnan, Ashwin N.
    Szolovits, Peter
    Weiner, Howard L.
    Karlson, Elizabeth W.
    Murphy, Shawn N.
    Savova, Guergana K.
    Cai, Tianxi
    Churchill, Susanne E.
    Plenge, Robert M.
    Kohane, Isaac S.
    De Jager, Philip L.
    [J]. PLOS ONE, 2013, 8 (11):
  • [38] Electronic medical records
    Greiver, Michelle
    [J]. CANADIAN MEDICAL ASSOCIATION JOURNAL, 2008, 178 (10) : 1323 - 1324
  • [39] ELECTRONIC MEDICAL RECORDS
    Taft, Edwin G.
    [J]. SCIENTIFIC AMERICAN, 2014, 310 (03) : 6 - +
  • [40] Characteristics of multiple sclerosis by ethnoracial groups in medicaid and electronic health records
    Grimes, Nydjie
    Hayflinger, Cortney
    Jones, Cynthia
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 : 76 - 76