Harnessing electronic medical records to advance research on multiple sclerosis

被引:16
|
作者
Damotte, Vincent [1 ]
Lizee, Antoine [1 ,3 ]
Tremblay, Matthew [1 ,2 ]
Agrawal, Alisha [1 ]
Khankhanian, Pouya [1 ,4 ]
Santaniello, Adam [1 ]
Gomez, Refujia [1 ]
Lincoln, Robin [1 ]
Tang, Wendy [1 ]
Chen, Tiffany [1 ]
Lee, Nelson [5 ]
Villoslada, Pablo [1 ,6 ]
Hollenbach, Jill A. [1 ]
Bevan, Carolyn D. [1 ]
Graves, Jennifer [1 ]
Bove, Riley [1 ]
Goodin, Douglas S. [1 ]
Green, Ari J. [1 ]
Baranzini, Sergio E. [1 ]
Cree, Bruce A. C. [1 ]
Henry, Roland G. [1 ]
Hauser, Stephen L. [1 ]
Gelfand, Jeffrey M. [1 ]
Gourraud, Pierre-Antoine [1 ,3 ]
机构
[1] Univ Calif San Francisco, Sch Med, Dept Neurol, MS Genet, 675 Nelson Rising Lane,Box 3206, San Francisco, CA 94158 USA
[2] Univ Connecticut, Ctr Hlth, Dept Neurol, John Dempsey Hosp, Farmington, CT USA
[3] Univ Nantes, INSERM, Ctr Rech Transplantat & Immunol, UMR 1064,ATIP Avenir,Equipe 5, Nantes, France
[4] Univ Penn, Ctr Neuroengn & Therapeut, Philadelphia, PA 19104 USA
[5] Univ Calif San Francisco, Informat Technol, San Francisco, CA 94143 USA
[6] Hosp Clin Barcelona, IDIBAPS, Barcelona, Spain
关键词
Electronic medical records; natural language processing; HEALTH RECORDS; DISABILITY;
D O I
10.1177/1352458517747407
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Electronic medical records (EMR) data are increasingly used in research, but no studies have yet evaluated similarity between EMR and research-quality data and between characteristics of an EMR multiple sclerosis (MS) population and known natural MS history. Objectives: To (1) identify MS patients in an EMR system and extract clinical data, (2) compare EMR-extracted data with gold-standard research data, and (3) compare EMR MS population characteristics to expected MS natural history. Methods: Algorithms were implemented to identify MS patients from the University of California San Francisco EMR, de-identify the data and extract clinical variables. EMR-extracted data were compared to research cohort data in a subset of patients. Results: We identified 4142 MS patients via search of the EMR and extracted their clinical data with good accuracy. EMR and research values showed good concordance for Expanded Disability Status Scale (EDSS), timed-25-foot walk, and subtype. We replicated several expected MS epidemiological features from MS natural history including higher EDSS for progressive versus relapsing-remitting patients and for male versus female patients and increased EDSS with age at examination and disease duration. Conclusion: Large real-world cohorts algorithmically extracted from the EMR can expand opportunities for MS clinical research.
引用
收藏
页码:408 / 418
页数:11
相关论文
共 50 条
  • [1] Harnessing electronic medical records to advance research on multiple sclerosis
    Damotte, V.
    Lizee, A.
    Tremblay, M.
    Agrawal, A.
    Khankhanian, P.
    Santaniello, A.
    Gomez, R.
    Lincoln, R.
    Tang, W.
    Chen, T.
    Lee, N.
    Villoslada, P.
    Hollenbach, J.
    Bevan, C.
    Graves, J.
    Bove, R.
    Goodin, D.
    Green, A. J.
    Baranzini, S. E.
    Cree, B.
    Henry, R.
    Hauser, S. L.
    Gelfand, J. M.
    Gourraud, P. -A.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 128 - 129
  • [2] HARNESSING THE POWER OF ELECTRONIC MEDICAL RECORDS TO STREAMLINE RESEARCH IN MULTIPLE SCLEROSIS FOR AN ACADEMIC MEDICAL CENTER IN USA
    Damotte, Vincent
    Lizee, Antoine M.
    Lee, Nelson
    Tang, Wendy
    Khankhanian, Pouya
    Agrawal, Alisha
    Cree, Bruce
    Henry, Roland
    Tremblay, Matthew
    Hauser, Steven
    Gelfand, Jeffrey
    Gourraud, Pierre-Antoine
    [J]. HLA, 2016, 87 (04) : 273 - 273
  • [3] Harnessing electronic medical records
    Louisa Flintoft
    [J]. Nature Reviews Genetics, 2011, 12 (12) : 807 - 807
  • [4] Harnessing Electronic Medical Records in Cardiovascular Clinical Practice and Research
    Gouda, Pishoy
    Ezekowitz, Justin
    [J]. JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2023, 16 (03) : 546 - 556
  • [5] Harnessing Electronic Medical Records in Cardiovascular Clinical Practice and Research
    Pishoy Gouda
    Justin Ezekowitz
    [J]. Journal of Cardiovascular Translational Research, 2023, 16 : 546 - 556
  • [6] Leveraging Electronic Health Records for Research in Multiple Sclerosis
    Xia, Zongqi
    Bove, Riley
    Cai, Tianxi
    Cheng, Suchun
    Perez, Raul N. G.
    Gainer, Vivian S.
    Murphy, Shawn N.
    Chen, Pei J.
    Savova, Guergana K.
    Liao, Katherine
    Karlson, Elizabeth W.
    Shaw, Stanley
    Ananthkrishnan, Ashwin N.
    Szolovits, Peter
    Churchill, Susanne E.
    Kohane, Issac S.
    Plenge, Robert M.
    De Jager, Philip L.
    [J]. ANNALS OF NEUROLOGY, 2012, 72 : S141 - S141
  • [7] Leveraging electronic health records for research in multiple sclerosis
    Xia, Z.
    Bove, R.
    Cai, T.
    Cheng, S.
    Perez, R.
    Gainer, V.
    Murphy, S.
    Chen, P.
    Savova, G.
    Liao, K.
    Karlson, E.
    Shaw, S.
    Ananthakrishnan, A.
    Szolovits, P.
    Churchill, S.
    Kohane, I.
    Plenge, R.
    De Jager, P.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2012, 18 : 92 - 93
  • [8] Determining Multiple Sclerosis Subtype from Electronic Medical Records
    DuVall, Scott L.
    Butler, Jorie
    LaFleur, Joanne
    Kamauu, Aaron W. C.
    Schuerch, Markus
    Foskett, Nadia
    Nelson, Richard E.
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2013, 22 : 292 - 293
  • [9] Determining Multiple Sclerosis Phenotype from Electronic Medical Records
    Nelson, Richard E.
    Butler, Jorie
    LaFleur, Joanne
    Knippenberg, Kristin
    Kamauu, Aaron W. C.
    DuVall, Scott L.
    [J]. Journal of Managed Care & Specialty Pharmacy, 2016, 22 (12): : 1377 - 1382
  • [10] The intelligent use and clinical benefits of electronic medical records in multiple sclerosis
    Davis, Mary F.
    Haines, Jonathan L.
    [J]. EXPERT REVIEW OF CLINICAL IMMUNOLOGY, 2015, 11 (02) : 205 - 211