Lock-in detection for pulsed electrically detected magnetic resonance

被引:25
|
作者
Hoehne, Felix [1 ]
Dreher, Lukas [1 ]
Behrends, Jan [2 ]
Fehr, Matthias [2 ]
Huebl, Hans [3 ]
Lips, Klaus [2 ]
Schnegg, Alexander [2 ]
Suckert, Max [1 ]
Stutzmann, Martin [1 ]
Brandt, Martin S. [1 ]
机构
[1] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[2] Helmholtz Zentrum Berlin Mat & Energie, Inst Silizium Photovoltaik, D-12489 Berlin, Germany
[3] Bayer Akad Wissensch, Walther Meissner Inst, D-85748 Garching, Germany
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2012年 / 83卷 / 04期
关键词
ELECTRON-SPIN-RESONANCE; MICROCRYSTALLINE SILICON;
D O I
10.1063/1.4704837
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced non-resonant background. This is exemplarily demonstrated for spin-echo measurements in phosphorus-doped silicon. The modulation of the signal is achieved by cycling the phase of the projection pulse used in pEDMR for the readout of the spin state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704837]
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Theoretical study of the lock-in in pulsed laser gyroscopes
    Wen, Qiao
    Sun, Liqun
    Tian, Qian
    Zhang, Enyao
    [J]. JOURNAL OF OPTICS, 2010, 12 (01)
  • [32] Wafer-Level Electrically Detected Magnetic Resonance: Magnetic Resonance in a Probing Station
    McCrory, Duane J.
    Anders, Mark A.
    Ryan, Jason T.
    Shrestha, Pragya R.
    Cheung, Kin P.
    Lenahan, Patrick M.
    Campbell, Jason P.
    [J]. IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2018, 18 (02) : 139 - 143
  • [33] Lock-in and pulsed thermography for solar cell testing
    Muzika, L.
    Svantner, M.
    Kucera, M.
    [J]. APPLIED OPTICS, 2018, 57 (18) : D90 - D97
  • [34] Investigating a Lock-In Thermal Imaging Setup for the Detection and Characterization of Magnetic Nanoparticles
    Steinmetz, Lukas
    Kirsch, Christoph
    Geers, Christoph
    Petri-Fink, Alke
    Bonmarin, Mathias
    [J]. NANOMATERIALS, 2020, 10 (09) : 1 - 16
  • [35] Magnetic Sensing with Nitrogen-Vacancy Centers Based on Lock-in Detection
    Moreva, E.
    Bernardi, E.
    Traina, P.
    Petrini, G.
    Tchernij, S. Ditalia
    Forneris, J.
    Picollo, F.
    Pugliese, V
    Sosso, A.
    Pastuovic, Z.
    Degiovanni, I. P.
    Olivero, P.
    Genovese, M.
    [J]. 2020 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM), 2020,
  • [36] Multi-chromatic magnetic resonance imaging using frequency lock-in suppression
    Chen, Yu-Wen
    Hwang, Dennis W.
    [J]. NMR IN BIOMEDICINE, 2015, 28 (10) : 1187 - 1195
  • [37] Theory of time-domain measurement of spin-dependent recombination with pulsed electrically detected magnetic resonance
    Boehme, C
    Lips, K
    [J]. PHYSICAL REVIEW B, 2003, 68 (24):
  • [38] Portable Weak Magnetic Signal Detection System Based on Lock-in Amplifier
    Song, Junlei
    Tang, Xinda
    Dong, Kaifeng
    Wu, Tongyue
    Cui, Haozhe
    Jin, Fang
    Mo, Wenqin
    [J]. 2020 12TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN 2020), 2020, : 276 - 279
  • [39] THEORY OF ELECTRICALLY DETECTED MAGNETIC RESONANCE OF TRIPLET CENTERS IN SILICON
    Barabanov, A. V.
    Horoshok, R. A.
    [J]. UKRAINIAN JOURNAL OF PHYSICS, 2007, 52 (10): : 973 - 979
  • [40] Electrically detected magnetic resonance studies of phosphorus doped diamond
    Graf, T
    Brandt, MS
    Nebel, CE
    Stutzmann, M
    Koizumi, S
    [J]. PHYSICA B-CONDENSED MATTER, 2001, 308 : 593 - 597