On the Dimension of the Solution Set for Semilinear Fractional Differential Inclusions

被引:5
|
作者
Agarwal, Ravi P. [1 ,2 ]
Ahmad, Bashir [1 ]
Alsaedi, Ahmed [1 ]
Shahzad, Naseer [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
关键词
BOUNDARY-CONDITIONS;
D O I
10.1155/2012/305924
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence and dimension of the solution set for a nonlocal problem of semilinear fractional differential inclusions. The main tools of our study include some well-known results on multivalued maps.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] The solution set to BVP for some functional differential inclusions
    Augustynowicz, A
    Dzedzej, Z
    Gelman, BD
    SET-VALUED ANALYSIS, 1998, 6 (03): : 257 - 263
  • [32] CONVEXITY AND THE CLOSURE OF THE SOLUTION SET TO DIFFERENTIAL-INCLUSIONS
    CELLINA, A
    ORNELAS, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1990, 4B (02): : 255 - 263
  • [33] The Solution Set to BVP for Some Functional Differential Inclusions
    A. Augustynowicz
    Z. Dzedzej
    B. D. Gelman
    Set-Valued Analysis, 1998, 6 : 257 - 263
  • [34] Nonlocal fractional semilinear differential inclusions with noninstantaneous impulses and of order α ∈(1,2)
    Wang, JinRong
    Ibrahim, Ahmed G.
    O'Regan, Donal
    Elmandouh, Adel A.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (05) : 593 - 605
  • [35] Approximate Controllability Results for Fractional Semilinear Integro-Differential Inclusions in Hilbert Spaces
    N. I. Mahmudov
    R. Murugesu
    C. Ravichandran
    V. Vijayakumar
    Results in Mathematics, 2017, 71 : 45 - 61
  • [36] A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative
    RaviP Agarwal
    Mohammed Belmekki
    Mouffak Benchohra
    Advances in Difference Equations, 2009
  • [37] Approximate Controllability Results for Fractional Semilinear Integro-Differential Inclusions in Hilbert Spaces
    Mahmudov, N. I.
    Murugesu, R.
    Ravichandran, C.
    Vijayakumar, V.
    RESULTS IN MATHEMATICS, 2017, 71 (1-2) : 45 - 61
  • [38] A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative
    Agarwal, Ravi P.
    Belmekki, Mohammed
    Benchohra, Mouffak
    ADVANCES IN DIFFERENCE EQUATIONS, 2009, : 1 - 47
  • [39] MILD SOLUTIONS FOR NONLOCAL FRACTIONAL SEMILINEAR FUNCTIONAL DIFFERENTIAL INCLUSIONS INVOLVING CAPUTO DERIVATIVE
    Ibrahim, Ahmed G.
    Almoulhim, Noriah
    MATEMATICHE, 2014, 69 (01): : 125 - 148
  • [40] Existence results for semilinear differential inclusions
    Fan, Zhenbin
    Li, Gang
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (02) : 227 - 241