Vehicle parameter estimation using a model-based estimator

被引:74
|
作者
Reina, Giulio [1 ]
Paiano, Matilde [1 ]
Blanco-Claraco, Jose-Luis [2 ]
机构
[1] Univ Salento, Dept Engn Innovat, Via Arnesano, I-73100 Lecce, Italy
[2] Univ Almeria, Dept Engn, Almeria 04120, Spain
关键词
Vehicle state estimation; Extended Kalman filter; Mass estimation; Adaptive estimation; Vehicle lateral dynamics; MASS;
D O I
10.1016/j.ymssp.2016.06.038
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the last few years, many closed-loop control systems have been introduced in the automotive field to increase the level of safety and driving automation. For the integration of such systems, it is critical to estimate motion states and parameters of the vehicle that are not exactly known or that change over time. This paper presents a model-based observer to assess online key motion and mass properties. It uses common onboard sensors, i.e. a gyroscope and an accelerometer, and it aims to work during normal vehicle manoeuvres, such as turning motion and passing. First, basic lateral dynamics of the vehicle is discussed. Then, a parameter estimation framework is presented based on an Extended Kalman filter. Results are included to demonstrate the effectiveness of the estimation approach and its potential benefit towards the implementation of adaptive driving assistance systems or to automatically adjust the parameters of onboard controllers. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:227 / 241
页数:15
相关论文
共 50 条
  • [41] Model-Based Optimal Experiment Design for Nonlinear Parameter Estimation Using Exact Confidence Regions
    Mukkula, Anwesh Reddy Gottu
    Paulen, Radoslav
    IFAC PAPERSONLINE, 2017, 50 (01): : 13760 - 13765
  • [42] The model-based parameter estimation of antenna radiation patterns using windowed interpolation and spherical harmonics
    Allard, RJ
    Werner, DH
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (08) : 1891 - 1906
  • [43] Surrogate model-based inverse parameter estimation in deep drawing using automatic knowledge acquisition
    Ryser, Matthias
    Neuhauser, Felix M.
    Hein, Christoph
    Hora, Pavel
    Bambach, Markus
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 117 (3-4): : 997 - 1013
  • [44] Deep Neural Network Model-based Parameter Estimation Method Using Transmissibility of Cantilevered Beam
    Song, Byoung-Gyu
    Kang, Namcheol
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2022, 46 (09) : 819 - 826
  • [45] Model-based parameter estimation of the frontostriatal system in schizophrenia patients using receptor binding data
    Tanaka, Shoji
    NEUROSCIENCE RESEARCH, 2008, 61 : S271 - S271
  • [46] Dual Extended Kalman Filter Based State and Parameter Estimator for Model-Based Control in Autonomous Vehicles
    Li, Chenran
    Liu, Yulong
    Sun, Liting
    Liu, Yahui
    Tomizuka, Masayoshi
    Zhan, Wei
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 327 - 333
  • [47] Model-based parameter estimation of antenna radiation pattern frequency spectra
    Allard, RJ
    Werner, DH
    Zmyslo, JS
    Werner, PL
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - ANTENNAS: GATEWAYS TO THE GLOBAL NETWORK, VOLS 1-4, 1998, : 62 - 65
  • [48] Generalized Parameter Estimation Method for Model-Based Real‑Time Optimization
    Zhang, Duo
    Wang, Kexin
    Xu, Zuhua
    Tula, Anjan K.
    Shao, Zhijiang
    Zhang, Zhengjiang
    Biegler, Lorenz T.
    Chemical Engineering Science, 2022, 258
  • [49] Online Parameter Estimation for Model-Based Force Control in Milling Processes
    Petruck, Henning
    Schlick, Christopher M.
    Stemmler, Sebastian
    Abel, Dirk
    Adams, Oliver
    Klocke, Fritz
    IFAC PAPERSONLINE, 2016, 49 (12): : 634 - 639
  • [50] Model-Based Parameter Estimation (MBPE) for metallic photonic crystal filters
    Tavzarashvili, K.
    Hafner, Ch.
    Xudong, C.
    Vahldieck, R.
    2005 ASIA-PACIFIC MICROWAVE CONFERENCE PROCEEDINGS, VOLS 1-5, 2005, : 2071 - 2074