Objective Bayesian analysis of the Frechet stress-strength model

被引:12
|
作者
Abbas, Kamran [1 ,2 ]
Tang, Yincai [1 ]
机构
[1] E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
[2] Univ Azad Jammu & Kashmir, Dept Stat, Muzaffarabad, Pakistan
基金
中国国家自然科学基金;
关键词
Frechet distribution; Reference priors; Matching priors; Jeffreys prior; Bayesian inference; INFERENCE; PRIORS;
D O I
10.1016/j.spl.2013.09.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Several reference priors and a general form of matching priors are derived for a stress-strength system, and it is concluded that none of the reference priors is a matching prior. The study shows that the matching prior performs better than Jeffreys prior and reference priors in meeting the target coverage probabilities. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 175
页数:7
相关论文
共 50 条
  • [1] Objective Bayesian analysis for generalized exponential stress-strength model
    Kang, Sang Gil
    Lee, Woo Dong
    Kim, Yongku
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (03) : 2079 - 2109
  • [2] Objective Bayesian estimation for multistate stress-strength model's reliability with various kernel functions
    Ma, Haijing
    Jia, Junmei
    Peng, Xiuyun
    Yan, Zaizai
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (05) : 2776 - 2791
  • [3] On the estimation the reliability stress-strength model for the odd Frechet inverse exponential distribution
    Eman, A. A.
    Salman, Abbas N.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 513 - 521
  • [4] Objective Bayesian analysis for generalized exponential stress–strength model
    Sang Gil Kang
    Woo Dong Lee
    Yongku Kim
    [J]. Computational Statistics, 2021, 36 : 2079 - 2109
  • [5] RELIABILITY ESTIMATION IN STRESS-STRENGTH MODEL - A BAYESIAN-APPROACH
    PANDEY, M
    UPADHYAY, SK
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1984, 18 (02) : 225 - 226
  • [6] The Estimation of Reliability from Stress-Strength for Exponentiated Frechet Distribution
    Badr, M. M.
    Shawky, A., I
    Alharby, A. H.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A3): : 863 - 874
  • [7] BAYESIAN-ANALYSIS OF RELIABILITY IN MULTICOMPONENT STRESS-STRENGTH MODELS
    DRAPER, NR
    GUTTMAN, I
    [J]. COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1978, 7 (05): : 441 - 451
  • [8] Bayesian analysis for a stress-strength system under noninformative priors
    Sun, DC
    Ghosh, M
    Basu, AP
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (02): : 323 - 332
  • [9] ESTIMATION OF RELIABILITY IN MULTICOMPONENT STRESS-STRENGTH BASED ON EXPONENTIAL FRECHET DISTRIBUTIONS
    Shang, Li-Feng
    Yan, Zai-Zai
    [J]. THERMAL SCIENCE, 2023, 27 (3A): : 1747 - 1754
  • [10] Bayesian and non-Bayesian analysis with MCMC algorithm of stress-strength for a new two parameters lifetime model with applications
    Alsadat, Najwan
    Marei, Ghareeb A.
    Elgarhy, Mohammed
    Ahmad, Hijaz
    Almetwally, Ehab M.
    [J]. AIP ADVANCES, 2023, 13 (09)