The Estimation of Reliability from Stress-Strength for Exponentiated Frechet Distribution

被引:4
|
作者
Badr, M. M. [1 ]
Shawky, A., I [2 ]
Alharby, A. H. [2 ]
机构
[1] King Abdulaziz Univ, Fac Sci Girls, Stat Dept, POB 70973, Jeddah 21577, Saudi Arabia
[2] King Abdulaziz Univ, Stat Dept, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Bayesian estimator; Maximum likelihood estimator (MLE); Uniformly minimum variance unbiased estimator (UMVUE); Stress-strength model; Exponentiated Frechet distribution (EFD); 62F10; 62E20; 62F12; 62F15; LESS-THAN; BAYES ESTIMATION; MODEL; P(Y-LESS-THAN-X); SYSTEM; Y);
D O I
10.1007/s40995-017-0372-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper deals with the problem of estimation of the stress-strength function R=P(Y<X), when X and Y are two independent but not identically distributed random variables belonging to the exponentiated Frechet (EF) distribution. Different estimators of R, namely, maximum likelihood, uniformly minimum variance unbiased, and Bayes, are derived in closed form. In addition, two-sided confidence interval for R is obtained. We discuss the reliability in multi-component model. Simulation studies are performed to compare the different estimates of R and Rs,k. Real data are used as a practical application of the proposed procedure.
引用
收藏
页码:863 / 874
页数:12
相关论文
共 50 条
  • [1] The Estimation of Reliability from Stress–Strength for Exponentiated Frechet Distribution
    M. M. Badr
    A. I. Shawky
    A. H. Alharby
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 863 - 874
  • [2] Estimation of stress-strength reliability from exponentiated Fr,chet distribution
    Rao, G. Srinivasa
    Rosaiah, K.
    Babu, M. Sridhar
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 86 (9-12): : 3041 - 3049
  • [3] Estimation of Stress-Strength Reliability from Exponentiated Inverse Rayleigh Distribution
    Rao, G. Srinivasa
    Mbwambo, Sauda
    Josephat, P. K.
    [J]. INTERNATIONAL JOURNAL OF RELIABILITY QUALITY & SAFETY ENGINEERING, 2019, 26 (01):
  • [4] Estimation of stress-strength reliability from exponentiated Fréchet distribution
    G. Srinivasa Rao
    K. Rosaiah
    M. Sridhar Babu
    [J]. The International Journal of Advanced Manufacturing Technology, 2016, 86 : 3041 - 3049
  • [5] Estimation of multicomponent stress-strength reliability for exponentiated Gumbel distribution
    Chacko, Manoj
    Koshy, Ashly Elizabeth
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (07) : 1595 - 1630
  • [6] Estimation of multicomponent stress-strength reliability from exponentiated inverse Rayleigh distribution
    Srinivasa Rao, G.
    Mbwambo, Sauda
    Pak, Abbas
    [J]. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2021, 24 (03): : 499 - 519
  • [7] Multicomponent Stress-strength Reliability with Exponentiated Teissier Distribution
    Pasha-Zanoosi, Hossein
    Pourdarvish, Ahmad
    Asgharzadeh, Akbar
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2022, 51 (04) : 35 - 59
  • [8] Estimation of Multicomponent Stress-Strength Reliability with Exponentiated Generalized Inverse Rayleigh Distribution
    Temraz, Neama Salah Youssef
    [J]. ENGINEERING LETTERS, 2024, 32 (08) : 1623 - 1631
  • [9] Classical and Bayesian estimation of multicomponent stress-strength reliability for exponentiated Pareto distribution
    Akgul, Fatma Gul
    [J]. SOFT COMPUTING, 2021, 25 (14) : 9185 - 9197
  • [10] On the estimation the reliability stress-strength model for the odd Frechet inverse exponential distribution
    Eman, A. A.
    Salman, Abbas N.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 513 - 521