A Higher Frobenius-Schur Indicator Formula for Group-Theoretical Fusion Categories

被引:3
|
作者
Schauenburg, Peter [1 ]
机构
[1] Univ Bourgogne Franche Comte, CNRS, Inst Math Bourgogne, UMR 5584, F-21000 Dijon, France
关键词
CENTRAL INVARIANTS; EQUIVALENCE;
D O I
10.1007/s00220-015-2437-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Group-theoretical fusion categories are defined by data concerning finite groups and their cohomology: a finite group G endowed with a three-cocycle omega, and a subgroup endowed with a two-cochain whose coboundary is the restriction of omega. The objects of the category are G-graded vector spaces with suitably twisted -actions; the associativity of tensor products is controlled by omega. Simple objects are parametrized in terms of projective representations of finite groups, namely of the stabilizers in H of right H-cosets in G, with respect to two-cocycles defined by the initial data. We derive and study general formulas that express the higher Frobenius-Schur indicators of simple objects in a group-theoretical fusion category in terms of the group-theoretical and cohomological data defining the category and describing its simples.
引用
收藏
页码:833 / 849
页数:17
相关论文
共 50 条
  • [21] Algebraic Structures in Group-theoretical Fusion Categories
    Morales, Yiby
    Muller, Monique
    Plavnik, Julia
    Camacho, Ana Ros
    Tabiri, Angela
    Walton, Chelsea
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (06) : 2399 - 2431
  • [22] Weakly group-theoretical and solvable fusion categories
    Etingof, Pavel
    Nikshych, Dmitri
    Ostrik, Victor
    ADVANCES IN MATHEMATICS, 2011, 226 (01) : 176 - 205
  • [23] Strongly real 2-blocks and the Frobenius-Schur indicator
    Murray, J
    OSAKA JOURNAL OF MATHEMATICS, 2006, 43 (01) : 201 - 213
  • [24] Group-theoretical Property of Slightly Degenerate Fusion Categories of Certain Frobenius-Perron Dimensions
    Yu, Zhiqiang
    Zheng, Ying
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (01) : 103 - 110
  • [25] Algebraic Structures in Group-theoretical Fusion Categories
    Yiby Morales
    Monique Müller
    Julia Plavnik
    Ana Ros Camacho
    Angela Tabiri
    Chelsea Walton
    Algebras and Representation Theory, 2023, 26 : 2399 - 2431
  • [26] The Super Frobenius-Schur Indicator and Finite Group Gauge Theories on Pin- Surfaces
    Ichikawa, Takumi
    Tachikawa, Yuji
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 400 (01) : 417 - 428
  • [27] Computing the Frobenius-Schur indicator for abelian extensions of Hopf algebras
    Kashina, Y
    Mason, G
    Montgomery, S
    JOURNAL OF ALGEBRA, 2002, 251 (02) : 888 - 913
  • [28] Frobenius-Schur indicators and the mapping class group of the torus
    Farnsteiner, Julian
    Schweigert, Christoph
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (02)
  • [29] On Lagrangian algebras in group-theoretical braided fusion categories
    Davydov, Alexei
    Simmons, Darren
    JOURNAL OF ALGEBRA, 2017, 471 : 149 - 175
  • [30] Frobenius-Schur indicator and the ubiquity of Brock-Granville quadratic excess
    Katz, NM
    FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (01) : 45 - 69