MAMA: MANIFEST ANALYSIS FOR MALWARE DETECTION IN ANDROID

被引:63
|
作者
Sanz, Borja [1 ]
Santos, Igor [1 ]
Laorden, Carlos [1 ]
Ugarte-Pedrero, Xabier [1 ]
Nieves, Javier [1 ]
Bringas, Pablo G. [1 ]
Alvarez Maranon, Gonzalo [2 ]
机构
[1] Univ Deusto, S3Lab, Bilbao 48007, Spain
[2] CSIC, Inst Fis Aplicada, Madrid, Spain
关键词
Android; machine learning; malware;
D O I
10.1080/01969722.2013.803889
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The use of mobile phones has increased because they offer nearly the same functionality as a personal computer. In addition, the number of applications available for Android-based mobile devices has increased. Google offers programmers the opportunity to upload and sell applications in the Android Market, but malware writers upload their malicious code there. In light of this background, we present here manifest analysis for malware detection in Android (MAMA), a new method that extracts several features from the Android manifest of the applications to build machine learning classifiers and detect malware.
引用
收藏
页码:469 / 488
页数:20
相关论文
共 50 条
  • [21] Detection approaches for android malware: Taxonomy and review analysis
    Manzil, Hashida Haidros Rahima
    Naik, S. Manohar
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [22] Static Analysis of Executables for Collaborative Malware Detection on Android
    Schmidt, Aubrey-Derrick
    Bye, Rainer
    Schmidt, Hans-Gunther
    Clausen, Jan
    Kiraz, Osman
    Yueksel, Kamer A.
    Camtepe, Seyit A.
    Albayrak, Sahin
    2009 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-8, 2009, : 631 - +
  • [23] Formal Methods for Android Banking Malware Analysis and Detection
    Iadarola, Giacomo
    Martinelli, Fabio
    Mercaldo, Francesco
    Santone, Antonella
    2019 SIXTH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS: SYSTEMS, MANAGEMENT AND SECURITY (IOTSMS), 2019, : 331 - 336
  • [24] Deep Android Malware Detection
    McLaughlin, Niall
    del Rincon, Jesus Martinez
    Kang, BooJoong
    Yerima, Suleiman
    Miller, Paul
    Sezer, Sakir
    Safaei, Yeganeh
    Trickel, Erik
    Zhao, Ziming
    Doup, Adam
    Ahn, Gail Joon
    PROCEEDINGS OF THE SEVENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY (CODASPY'17), 2017, : 301 - 308
  • [25] Detection of Repackaged Android Malware
    Shahriar, Hossain
    Clincy, Victor
    2014 9TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST), 2014, : 349 - 354
  • [26] Smart malware detection on Android
    Gheorghe, Laura
    Marin, Bogdan
    Gibson, Gary
    Mogosanu, Lucian
    Deaconescu, Razvan
    Voiculescu, Valentin-Gabriel
    Carabas, Mihai
    SECURITY AND COMMUNICATION NETWORKS, 2015, 8 (18) : 4254 - 4272
  • [27] TRENDS IN ANDROID MALWARE DETECTION
    Shaerpour, Kaveh
    Dehghantanha, Ali
    Mahmod, Ramlan
    JOURNAL OF DIGITAL FORENSICS SECURITY AND LAW, 2013, 8 (03) : 21 - 40
  • [28] Android malware detection model
    Yang H.
    Na Y.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (03): : 45 - 51
  • [29] Android Fragmentation in Malware Detection
    Long Nguyen-Vu
    Ahn, Jinung
    Jung, Souhwan
    COMPUTERS & SECURITY, 2019, 87
  • [30] Detection of Android Malware: Combined with Static Analysis and. Dynamic Analysis
    Su, Ming-Yang
    Fung, Kek-Tung
    Huang, Yu-Hao
    Kang, Ming-Zhi
    Chung, Yen-Heng
    2016 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS 2016), 2016, : 1013 - 1018