A large-scale framework for storage, access and analysis of time series data in the manufacturing domain

被引:4
|
作者
Moerzinger, Benjamin [1 ]
Weiler, Thomas [1 ]
Trautner, Thomas [1 ]
Ayatollahi, Iman [1 ]
Angerer, Bernhard [1 ]
Kittl, Burkhard [1 ]
机构
[1] TU Wien, Inst Prod Engn & Laser Technol, Karlspl 13, A-1040 Vienna, Austria
关键词
Linked data; Semantic web; Manufacturing; IMPROVEMENT;
D O I
10.1016/j.procir.2017.12.267
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series data from machining process monitoring promises to be a rich resource for optimization applications. Limited data access, however restricts the number of potential applications significantly. Semantic technologies such as ontology based data access could help overcoming those restrictions and therefore pave the way for a wider use of state of the art data analysis applications. Semantic web technologies are not yet widely applied in the manufacturing domain which partly has to do with the fact that in the past no relevant use cases where presented in this area. Therefore, in this paper, semantic technologies and their potential applications are illustrated using an existing research database. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:595 / 600
页数:6
相关论文
共 50 条
  • [21] A Data-Driven Time-Series Fault Prediction Framework for Dynamically Evolving Large-Scale Data Streaming Systems
    Hell, Michell
    de Aguiar, Eduardo Pestana
    Soares, Nielson
    Goliatt, Leonardo
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2022, 24 (06) : 2831 - 2844
  • [22] Large-Scale Unusual Time Series Detection
    Hyndman, Rob J.
    Wang, Earo
    Laptev, Nikolay
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 1616 - 1619
  • [23] MetHoS: a platform for large-scale processing, storage and analysis of metabolomics data
    Konstantinos Tzanakis
    Tim W. Nattkemper
    Karsten Niehaus
    Stefan P. Albaum
    BMC Bioinformatics, 23
  • [24] MetHoS: a platform for large-scale processing, storage and analysis of metabolomics data
    Tzanakis, Konstantinos
    Nattkemper, Tim W.
    Niehaus, Karsten
    Albaum, Stefan P.
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [25] Resource Time Series Analysis and Forecasting in Large-Scale Virtual Clusters
    Lin, Yue
    Wen, Jiamin
    Zhang, Xudong
    Liang, Yan
    Li, Jianjiang
    BIG DATA MINING AND ANALYTICS, 2025, 8 (03): : 592 - 605
  • [26] Feature-aware forecasting of large-scale time series data sets
    Hartmann, Claudio
    Kegel, Lars
    Lehner, Wolfgang
    IT-INFORMATION TECHNOLOGY, 2020, 62 (3-4): : 157 - 168
  • [27] Extending SOSJ Framework for Large-Scale Dynamic Manufacturing Systems
    Atmojo, Udayanto Dwi
    Salcic, Zoran
    Wang, Kevin I-Kai
    2016 IEEE 21ST INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2016,
  • [28] Random access in large-scale DNA data storage (vol 36, pg 242, 2018)
    Organick, Lee
    Ang, Siena Dumas
    Chen, Yuan-Jyue
    Lopez, Randolph
    Yekhanin, Sergey
    Makarychev, Konstantin
    Racz, Miklos Z.
    Kamath, Govinda
    Gopalan, Parikshit
    Nguyen, Bichlien
    Takahashi, Christopher N.
    Newman, Sharon
    Parker, Hsing-Yeh
    Rashtchian, Cyrus
    Stewart, Kendall
    Gupta, Gagan
    Carlson, Robert
    Mulligan, John
    Carmean, Douglas
    Seelig, Georg
    Ceze, Luis
    Strauss, Karin
    NATURE BIOTECHNOLOGY, 2018, 36 (03) : 242 - +
  • [29] Random access in large-scale DNA data storage (vol 36, pg 242, 2018)
    Organick, Lee
    Ang, Siena Dumas
    Chen, Yuan-Jyue
    Lopez, Randolph
    Yekhanin, Sergey
    Makarychev, Konstantin
    Racz, Miklos Z.
    Kamath, Govinda
    Gopalan, Parikshit
    Nguyen, Bichlien
    Takahashi, Christopher N.
    Newman, Sharon
    Parker, Hsing-Yeh
    Rashtchian, Cyrus
    Stewart, Kendall
    Gupta, Gagan
    Carlson, Robert
    Mulligan, John
    Carmean, Douglas
    Seelig, Georg
    Ceze, Luis
    Strauss, Karin
    NATURE BIOTECHNOLOGY, 2018, 36 (07) : 660 - 660
  • [30] Domain-based autoconfiguration framework for large-scale MANETs
    Li, Longjiang
    Cai, Yunze
    Xu, Xiaoming
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2009, 9 (07): : 938 - 947