Lithium-Gold Reference Electrode for Potential Stability DuringIn SituElectron Microscopy Studies of Lithium-Ion Batteries

被引:19
|
作者
Hou, Jing [1 ]
Girod, Robin [1 ]
Nianias, Nikolaos [1 ]
Shen, Tzu-Hsien [1 ]
Fan, Jialiang [1 ]
Tileli, Vasiliki [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Mat, CH-1015 Lausanne, Switzerland
关键词
in situTEM; lithium-ion battery; reference electrode; Li-Au alloy; IN-SITU; ELECTROCHEMICAL MEASUREMENTS; ANODES; LIFEPO4; LIPF6; FEPO4;
D O I
10.1149/1945-7111/ab9eea
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrochemical liquid-phase transmission electron microscopy (TEM) is showing excellent promise in fundamental studies of energy-related processes including lithium-ion battery (LIB) cycling. A key requirement to accurately interpret the measurements and acquire quantitative information is the implementation of a reliable reference electrode. Quasi-reference electrodes (QRE) remain commonly used due to microfabrication constraints of the electrochemical cell, however, they typically yield dramatic potential drifts making the electrochemical results inconclusive. Here, we present a method of producing a stable and readily interpretable lithium-gold alloy micro-reference electrode, which exhibits a reference potential of 0.1 V vs Li/Li+. We first examine the feasibility of electrochemically alloying a pristine gold electrode, patterned on a chip forin situTEM, using a benchtop setup, and investigate various sources to support the lithiation. We confirm the presence of the Li-Au alloy using chronopotentiometry (CP) and open circuit voltage (OCV) measurements, and by scanning electron microscopy (SEM), electron energy loss spectroscopy (EELS) and high-resolution (HR) TEM. Finally, we apply this methodologyin situand use LiFePO(4)as a model cathode material to demonstrate the merit of the Li-Au alloy reference electrode for obtaining reproducible cyclic voltammetry (CV) measurements on a liquid cell microelectrode system.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Synthesis and application of electrode materials for lithium-ion batteries
    Wu Jiayi
    2019 3RD INTERNATIONAL WORKSHOP ON RENEWABLE ENERGY AND DEVELOPMENT (IWRED 2019), 2019, 267
  • [32] Inherent Behavior of Electrode Materials of Lithium-Ion Batteries
    Safaeipour, Sepideh
    Shahpouri, Elham
    Kalantarian, Mohammad Mahdi
    Mustarelli, Piercarlo
    CHEMPLUSCHEM, 2024, 89 (09):
  • [33] New electrode materials for lithium-ion batteries (Review)
    T. L. Kulova
    Russian Journal of Electrochemistry, 2013, 49 : 1 - 25
  • [34] Electrocapillary boosting electrode wetting for lithium-ion batteries
    Cui, Hao
    Song, Youzhi
    Ren, Dongsheng
    Wang, Li
    He, Xiangming
    JOULE, 2024, 8 (01) : 29 - 44
  • [35] New electrode materials for lithium-ion batteries (Review)
    Kulova, T. L.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2013, 49 (01) : 1 - 25
  • [36] Carbon coating of electrode materials for lithium-ion batteries
    Yaroslavtsev, Andrey B.
    Stenina, Irina A.
    SURFACE INNOVATIONS, 2021, 9 (2-3) : 92 - 110
  • [37] Organic Sulfide Electrode Materials for Lithium-Ion Batteries
    Sun Wanning
    Ying Jierong
    Huang Zhenlei
    Jiang Changyin
    Wan Chunrong
    PROGRESS IN CHEMISTRY, 2009, 21 (09) : 1963 - 1968
  • [38] Negative and positive electrode materials for lithium-ion batteries
    Guyomard, D
    La Salle, AL
    Piffard, Y
    Verbaere, A
    Tournoux, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE C-CHIMIE, 1999, 2 (11-13): : 603 - 610
  • [39] Advantages of blended electrode for lithium-ion rechargeable batteries
    Numata, Tatsuji
    Amemiya, Chika
    Iriyama, Jiro
    Miura, Tamaki
    Shirakata, Masato
    NEC Research and Development, 2000, 41 (01): : 8 - 12
  • [40] Engineering electrode microstructures for advanced lithium-ion batteries
    Chen, Zhou
    Zhang, Cheng
    MICROSTRUCTURES, 2024, 4 (03):