A Robust Discontinuous Galerkin High-Order Finite Element Method for Elasticity Problems with Interfaces

被引:2
|
作者
Zhang, Jianfei [1 ]
Deng, Xiaowei [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, 8 Fochengxi Rd, Nanjing 211100, Jiangsu, Peoples R China
关键词
Discontinuous Galerkin; Nitsche's method; stabilization; finite element; elasticity; DIRICHLET BOUNDARY-CONDITIONS; WEIGHTED INTERIOR PENALTIES; NITSCHES METHOD; FORMULATION; CONSTRAINTS; SIMULATION;
D O I
10.1142/S0219876219500762
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A robust discontinuous Galerkin (DC) finite element method is proposed for elasticity problems with interfaces, where the continuity across the interfaces is weakly enforced by using Nitsche's method. We employ a weighting for the interfacial consistency terms arising in the Nitsche variational form and present a detailed finite element formulation of this DC method. The stabilization parameter is evaluated by solving element level generalized eigenvalue problem for higher-order elements. Consequently, we give the choice of the weighting parameter that results in an estimate for the stabilization parameter such that the method remains well behaved in the pathological cases. The accuracy and robustness of the proposed method are then demonstrated through several numerical examples.
引用
下载
收藏
页数:21
相关论文
共 50 条
  • [41] An improvement of classical slope limiters for high-order discontinuous Galerkin method
    Ghostine, R.
    Kesserwani, G.
    Mose, R.
    Vazquez, J.
    Ghenaim, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 59 (04) : 423 - 442
  • [42] A scalable high-order discontinuous galerkin method for global atmospheric modeling†
    Scientific Computing Division, National Center for Atmospheric Research , 1850 Table Mesa Drive, Boulder CO 80305, United States
    Parallel Computational Fluid Dynamics 2006, 2007, : 215 - 222
  • [43] Subcell finite volume multigrid preconditioning for high-order discontinuous Galerkin methods
    Birken, Philipp
    Gassner, Gregor J.
    Versbach, Lea M.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2019, 33 (09) : 353 - 361
  • [44] A high-order discontinuous Galerkin method for all-speed flows
    Renda, S. M.
    Hartmann, R.
    De Bartolo, C.
    Wallraff, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 77 (04) : 224 - 247
  • [45] Assessment of a high-order accurate Discontinuous Galerkin method for turbomachinery flows
    Bassi, F.
    Botti, L.
    Colombo, A.
    Crivellini, A.
    Franchina, N.
    Ghidoni, A.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2016, 30 (04) : 307 - 328
  • [46] High-Order Solution of Viscoelastic Fluids Using the Discontinuous Galerkin Method
    Mirzakhalili, Ehsan
    Nejat, Amir
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (03):
  • [47] An Efficient High-Order Time Integration Method for Spectral-Element Discontinuous Galerkin Simulations in Electromagnetics
    Misun Min
    Paul Fischer
    Journal of Scientific Computing, 2013, 57 : 582 - 603
  • [48] Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows
    Chapelier, J. -B.
    Plata, M. de la Llave
    Renac, F.
    Lamballais, E.
    COMPUTERS & FLUIDS, 2014, 95 : 210 - 226
  • [49] A high-order Discontinuous Galerkin Chimera method for laminar and turbulent flows
    Wurst, Michael
    Kessler, Manuel
    Kraemer, Ewald
    COMPUTERS & FLUIDS, 2015, 121 : 102 - 113
  • [50] A high-order Discontinuous Galerkin Method with mesh refinement for optimal control
    Henriques, Joao C. C.
    Lemos, Joao M.
    Eca, Luis
    Gato, Luis M. C.
    Falcao, Antonio F. O.
    AUTOMATICA, 2017, 85 : 70 - 82