Standardized Effect Size Measures for Mediation Analysis in Cluster-Randomized Trials

被引:13
|
作者
Stapleton, Laura M. [1 ]
Pituch, Keenan A. [2 ]
Dion, Eric [3 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Univ Texas Austin, Austin, TX 78712 USA
[3] Univ Quebec Montreal, Montreal, PQ, Canada
来源
JOURNAL OF EXPERIMENTAL EDUCATION | 2015年 / 83卷 / 04期
关键词
effect size; experiment; hierarchical linear modeling (HLM); intervention; mediation; MULTILEVEL MODELS; LEVEL MEDIATION; STRATEGIES; STATISTICS; PRODUCT;
D O I
10.1080/00220973.2014.919569
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This article presents 3 standardized effect size measures to use when sharing results of an analysis of mediation of treatment effects for cluster-randomized trials. The authors discuss 3 examples of mediation analysis (upper-level mediation, cross-level mediation, and cross-level mediation with a contextual effect) with demonstration of the calculation and interpretation of the effect size measures using a simulated dataset and an empirical dataset from a cluster-randomized trial of peer tutoring. SAS syntax is provided for parametric percentile bootstrapped confidence intervals of the effect sizes. The use of any of the 3 standardized effect size measures depends on the nature of the inference the researcher wishes to make within a single site, across the broad population, or at the site level.
引用
收藏
页码:547 / 582
页数:36
相关论文
共 50 条
  • [41] Weight loss in primary care: A pooled analysis of two pragmatic cluster-randomized trials
    Katzmarzyk, Peter T.
    Apolzan, John W.
    Gajewski, Byron
    Johnson, William D.
    Martin, Corby K.
    Newton, Robert L., Jr.
    Perri, Michael G.
    VanWormer, Jeffrey J.
    Befort, Christie A.
    [J]. OBESITY, 2021, 29 (12) : 2044 - 2054
  • [42] Universal Prevention for Anxiety and Depressive Symptoms in Children: A Meta-analysis of Randomized and Cluster-Randomized Trials
    Ahlen, Johan
    Lenhard, Fabian
    Ghaderi, Ata
    [J]. JOURNAL OF PRIMARY PREVENTION, 2015, 36 (06): : 387 - 403
  • [43] Addressing identification bias in the design and analysis of cluster-randomized pragmatic trials: a case study
    Jennifer F. Bobb
    Hongxiang Qiu
    Abigail G. Matthews
    Jennifer McCormack
    Katharine A. Bradley
    [J]. Trials, 21
  • [44] Universal Prevention for Anxiety and Depressive Symptoms in Children: A Meta-analysis of Randomized and Cluster-Randomized Trials
    Johan Ahlen
    Fabian Lenhard
    Ata Ghaderi
    [J]. The Journal of Primary Prevention, 2015, 36 : 387 - 403
  • [45] MSurvPow: a FORTRAN program to calculate the sample size and power for cluster-randomized clinical trials with survival outcomes
    Gao, F
    Manatunga, AK
    Chen, SD
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 78 (01) : 61 - 67
  • [46] Multiple imputation by predictive mean matching in cluster-randomized trials
    Brittney E. Bailey
    Rebecca Andridge
    Abigail B. Shoben
    [J]. BMC Medical Research Methodology, 20
  • [47] Permutation tests for stepped-wedge cluster-randomized trials
    Thompson, Jennifer
    Davey, Calum
    Hayes, Richard
    Hargreaves, James
    Fielding, Katherine
    [J]. STATA JOURNAL, 2019, 19 (04): : 803 - 819
  • [48] Multiple imputation by predictive mean matching in cluster-randomized trials
    Bailey, Brittney E.
    Andridge, Rebecca
    Shoben, Abigail B.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2020, 20 (01)
  • [49] Correction: Sample Size Requirements to Test Subgroup-Specific Treatment Effects in Cluster-Randomized Trials
    Xueqi Wang
    Keith S. Goldfeld
    Monica Taljaard
    Fan Li
    [J]. Prevention Science, 2024, 25 (6) : 1004 - 1004
  • [50] A simple sample size formula for analysis of covariance in cluster randomized trials
    Teerenstra, Steven
    Eldridge, Sandra
    Graff, Maud
    de Hoop, Esther
    Borm, George F.
    [J]. STATISTICS IN MEDICINE, 2012, 31 (20) : 2169 - 2178