Investigation of turbulent transport regimes in the tokamak edge by using two-fluid simulations

被引:33
|
作者
Giacomin, M. [1 ]
Ricci, P. [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
fusion plasma; plasma simulation; plasma dynamics; SCRAPE-OFF-LAYER; ALCATOR C-MOD; HIGH-CONFINEMENT; DENSITY LIMIT; GYROKINETIC SIMULATIONS; POWER THRESHOLD; MAGNETIC SHEAR; ELECTRIC-FIELD; TRANSITION; PLASMAS;
D O I
10.1017/S0022377820000914
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The results of flux-driven, two-fluid simulations in single-null configurations are used to investigate the processes determining the turbulent transport in the tokamak edge. Three turbulent transport regimes are identified: (i) a developed transport regime with turbulence driven by an interchange instability, which shares a number of features with the standard L-mode of tokamak operation; (ii) a suppressed transport regime, characterized by a higher value of the energy confinement time, low-amplitude relative fluctuations driven by a Kelvin-Helmholtz instability, a strong$\boldsymbol {E}\times \boldsymbol {B}$sheared flow and the formation of a transport barrier, which recalls the H-mode; and (iii) a degraded confinement regime, characterized by a catastrophically large interchange-driven turbulent transport, which recalls the crossing of the Greenwald density limit. We derive an analytical expression of the pressure gradient length in the three regimes. The transition from the developed transport regime to the suppressed transport regime is obtained by increasing the heat source or decreasing the collisionality and vice versa for the transition from the developed transport regime to the degraded confinement regime. An analytical expression of the power threshold to access the suppressed transport regime, linked to the power threshold for H-mode access, as well as the maximum density achievable before entering the degraded confinement regime, related to the Greenwald density, are also derived. The experimental dependencies of the power threshold for H-mode access on density, tokamak major radius and isotope mass are retrieved. The analytical estimate of the density limit contains the correct dependence on the plasma current and on the tokamak minor radius.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Three-dimensional fluid simulations of tokamak edge turbulence
    Zeiler, A
    Biskamp, D
    Drake, JF
    Guzdar, PN
    PHYSICS OF PLASMAS, 1996, 3 (08) : 2951 - 2960
  • [42] Direct numerical simulations of two-fluid plasma turbulence
    Thyagaraja, A
    JOURNAL DE PHYSIQUE IV, 1995, 5 (C6): : 105 - 108
  • [43] Two-fluid biasing simulations of the large plasma device
    Fisher, Dustin M.
    Rogers, Barrett N.
    PHYSICS OF PLASMAS, 2017, 24 (02)
  • [44] Interpolated Pressure Laws in Two-Fluid Simulations and Hyperbolicity
    Helluy, Philippe
    Jung, Jonathan
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 37 - 53
  • [45] TWO-FLUID MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION
    Zenitani, Seiji
    Hesse, Michael
    Klimas, Alex
    ASTROPHYSICAL JOURNAL, 2009, 696 (02): : 1385 - 1401
  • [46] Turbulence simulations of transport barrier relaxations in tokamak edge plasmas
    Beyer, P.
    Benkadda, S.
    Fuhr-Chaudier, G.
    Garbet, X.
    Ghendrih, Ph
    Sarazin, Y.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (04) : 507 - 523
  • [47] Two- and three-dimensional simulations of a bubble plume using a two-fluid model
    Mudde, RF
    Simonin, O
    CHEMICAL ENGINEERING SCIENCE, 1999, 54 (21) : 5061 - 5069
  • [48] A two-fluid model of turbulent two-phase flow for simulating turbulent stratified flows
    Shen, YM
    Ng, CO
    Chwang, AT
    OCEAN ENGINEERING, 2003, 30 (02) : 153 - 161
  • [49] Two-fluid tokamak equilibria with reversed magnetic shear and sheared flow
    Poulipoulis, G.
    Throumoulopoulos, G. N.
    Tasso, H.
    JOURNAL OF PLASMA PHYSICS, 2007, 73 : 347 - 366
  • [50] Global Stability and Local Bifurcations in a Two-Fluid Model for Tokamak Plasma
    Zhelyazov, D.
    Han-Kwan, D.
    Rademacher, J. D. M.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (02): : 730 - 763