Dominions in finitely generated nilpotent groups

被引:3
|
作者
Magidin, A [1 ]
机构
[1] Natl Autonomous Univ Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
关键词
dominion; nilpotent;
D O I
10.1080/00927879908826714
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part, we prove that the dominion (in the sense of Isbell) of a subgroup of a finitely generated nilpotent group is trivial in the category of all nilpotent groups. In the second part, we show that the dominion of a subgroup of a finitely generated nilpotent group of class two is trivial in the category of all metabelian nilpotent groups.
引用
收藏
页码:4545 / 4559
页数:15
相关论文
共 50 条
  • [41] MODEL THEORETIC CONNECTED COMPONENTS OF FINITELY GENERATED NILPOTENT GROUPS
    Bowler, Nathan
    Chen, Cong
    Gismatullin, Jakub
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2013, 78 (01) : 245 - 259
  • [42] Finitely Generated Nilpotent Groups of Infinite Cyclic Commutator Subgroups
    Jun LIAO
    He Guo LIU
    Xing Zhong XU
    Ji Ping ZHANG
    [J]. Acta Mathematica Sinica., 2020, 36 (12) - 1340
  • [43] Finitely Generated Nilpotent Groups of Infinite Cyclic Commutator Subgroups
    Jun Liao
    He Guo Liu
    Xing Zhong Xu
    Ji Ping Zhang
    [J]. Acta Mathematica Sinica, English Series, 2020, 36 : 1315 - 1340
  • [44] Finitely Generated Nilpotent Groups of Infinite Cyclic Commutator Subgroups
    Liao, Jun
    Liu, He Guo
    Xu, Xing Zhong
    Zhang, Ji Ping
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (12) : 1315 - 1340
  • [45] Solvability of Independent Systems of Equations in Finitely Generated Nilpotent Groups
    V. A. Roman’kov
    [J]. Mathematical Notes, 2021, 110 : 560 - 564
  • [46] CRITERION OF TORSION ABSENCE IN THE NILPOTENT PRODUCT OF FINITELY GENERATED GROUPS
    LIMANSKII, VV
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1981, (01): : 58 - 65
  • [47] Elementary equivalence for finitely generated nilpotent groups and multilinear maps
    Oger, F
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (03) : 479 - 493
  • [48] A characterization of nilpotent-by-finite groups in the class of finitely generated soluble groups
    Endimioni, G
    [J]. COMMUNICATIONS IN ALGEBRA, 1997, 25 (04) : 1159 - 1168
  • [49] FINITELY GENERATED NILPOTENT ALGEBRAS
    SCHUCHKIN, NA
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1992, (03): : 3 - 7
  • [50] Algebraically and verbally closed subgroups and retracts of finitely generated nilpotent groups
    Roman'kov, V. A.
    Khisamiev, N. G.
    Konyrkhanova, A. A.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (03) : 536 - 545