Synchrotron X-ray topography of electronic materials

被引:31
|
作者
Tuomi, T [1 ]
机构
[1] Aalto Univ, Optoelect Lab, FIN-02015 Helsinki, Finland
关键词
topography;
D O I
10.1107/S0909049502004284
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.
引用
收藏
页码:174 / 178
页数:5
相关论文
共 50 条
  • [1] APPLICATION OF SYNCHROTRON X-RAY TOPOGRAPHY TO THE STUDY OF MATERIALS
    TANNER, BK
    ACTA PHYSICA POLONICA A, 1994, 86 (04) : 537 - 544
  • [2] Application of synchrotron X-ray topography to the study of materials
    1600, Commission of the European Communities; State Committee for Scientific Research; Institute of Physics of the Polish Academy of Sciences; Institute of Physics of the Jagiellonian University; Committee of Physics of the Polish Academy of Sciences; et al (Polish Acad of Sciences, Warszawa, Pol):
  • [3] SYNCHROTRON X-RAY TOPOGRAPHY
    MOORE, M
    RADIATION PHYSICS AND CHEMISTRY, 1995, 45 (03): : 427 - 444
  • [4] X-RAY TOPOGRAPHY WITH SYNCHROTRON RADIATION
    ALESHKOOZHEVSKIJ, OP
    PANCHENKO, VE
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1987, 261 (1-2): : 240 - 245
  • [5] A STATION FOR SYNCHROTRON X-RAY TOPOGRAPHY
    LIDER, VV
    ALESHKOOZHEVSKIJ, OP
    SHILIN, YN
    KOVALCHUK, MV
    LITVINOV, YM
    MAZURENKO, SN
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1989, 282 (2-3): : 632 - 633
  • [6] DETECTORS FOR SYNCHROTRON X-RAY TOPOGRAPHY
    KOCH, A
    MOY, JP
    MORSE, J
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1993, 26 (4A) : A19 - A21
  • [7] SYNCHROTRON X-RAY TOPOGRAPHY SITE AT HASYLAB
    BRADACZEK, H
    HILDEBRANDT, G
    JAHNIG, G
    STEPHENSON, JD
    GRAEFF, W
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, 1983, 208 (1-3): : 719 - 721
  • [8] SECTION X-RAY TOPOGRAPHY IN SYNCHROTRON EMISSION
    VASENKOV, AA
    KULIPANOV, GN
    LITVINOV, YM
    MAZURENKO, SN
    MOISEENKO, NF
    PANCHENKO, VE
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1985, 11 (19): : 1196 - 1200
  • [9] X-RAY TOPOGRAPHY WITH SYNCHROTRON RADIATION.
    Aleshko-Ozhevskij, O.P.
    Panchenko, V.E.
    Nuclear instruments and methods in physics research, 1986, A261 (1-2): : 240 - 245
  • [10] X-ray topography using synchrotron radiation
    Wieteska, K.
    Acta Physica Polonica A, 1994, 86 (4 pt 1):