Existence results for Riemann-Liouville fractional evolution inclusions in Banach spaces

被引:5
|
作者
Dads, El Hadi Ait [1 ,2 ]
Benyoub, Mohammed [3 ]
Ziane, Mohamed [4 ]
机构
[1] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Math, BP 2390, Marrakech, Morocco
[2] Sorbonne Univ, UMMISCO, IRD, UMI 209, Bondy, France
[3] Ecole Normale Super Taleb Abderrahmane, Dept Math, BP 4033, Laghouat 03000, Algeria
[4] Ibn Khaldoun Univ, Fac Math & Informat, BP 78, Tiaret 14000, Algeria
关键词
Fractional evolution inclusions; Riemann-Liouville fractional derivatives; Mild solutions; Multivalued map; Condensing map; Measure of noncompactness;
D O I
10.1007/s13370-020-00828-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to study the existence of mild solution for semi-linear fractional evolution inclusions involving Riemann-Liouville derivative in Banach space. We prove our main result by introducing a regular measure of noncompactness in weighted space of continuous functions and using the condensing multivalued maps theory. Our result improve and complement several earlier related works. An example is given to illustrate the applications of the abstract result.
引用
收藏
页码:317 / 331
页数:15
相关论文
共 50 条
  • [31] Existence of Solutions for Riemann-Liouville Fractional Boundary Value Problem
    Xie, Wenzhe
    Xiao, Jing
    Luo, Zhiguo
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [32] Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential equations
    Bashir Ahmad
    Sotiris K Ntouyas
    Jessada Tariboon
    [J]. Advances in Difference Equations, 2015
  • [33] Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential equations
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [34] Existence, stability and global attractivity results for nonlinear Riemann-Liouville fractional differential equations
    Dhage, Bapurao C.
    Graef, John R.
    Dhage, Shyam B.
    [J]. CUBO-A MATHEMATICAL JOURNAL, 2023, 25 (01): : 23 - 36
  • [35] Monotonicity Results for Nabla Riemann-Liouville Fractional Differences
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Balea, Itru
    Jan, Rashid
    Abualnaja, Khadijah M.
    [J]. MATHEMATICS, 2022, 10 (14)
  • [36] Existence-Uniqueness and Wright Stability Results of the Riemann-Liouville Fractional Equations by Random Controllers in MB-Spaces
    Mesiar, Radko
    Saadati, Reza
    [J]. MATHEMATICS, 2021, 9 (14)
  • [37] Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann-Liouville Boundary Conditions
    Manigandan, Murugesan
    Shanmugam, Saravanan
    Rhaima, Mohamed
    Sekar, Elango
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [38] Local existence for an impulsive fractional neutral integro-differential system with Riemann-Liouville fractional derivatives in a Banach space
    Kalamani, Palaniyappan
    Baleanu, Dumitru
    Arjunan, Mani Mallika
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [39] RELAXATION IN NONCONVEX OPTIMAL CONTROL PROBLEMS DESCRIBED BY EVOLUTION RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL INCLUSIONS
    Shi, Cuiyun
    Bin, Maojun
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2022, 19 (07) : 5380 - 5397
  • [40] BOUNDEDNESS OF RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR IN MORREY SPACES
    Senouci, M. A.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (01): : 82 - 91