Non-Fickian convection-diffusion models in porous media

被引:11
|
作者
Barbeiro, Silvia [1 ]
Bardeji, Somayeh Gh [1 ,2 ]
Ferreira, Jose A. [1 ]
Pinto, Luis [1 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, Apartado 3008,EC Univ, P-3001454 Coimbra, Portugal
[2] Shiraz Univ Med Sci, Med Imaging Res Ctr, Shiraz, Iran
关键词
PARABOLIC INTEGRODIFFERENTIAL EQUATIONS; FINITE-ELEMENT METHODS; GALERKIN APPROXIMATIONS; HETEROGENEOUS MEDIA; MATHEMATICAL-MODEL; EVOLVING SCALES; DISPERSION; TRANSPORT; SUPRACONVERGENCE; SUPERCLOSENESS;
D O I
10.1007/s00211-017-0922-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differential equation, which models the convection-diffusion transport process. The numerical scheme is based on a conforming piecewise linear finite element method for the discretization in space. The fully discrete approximations is obtained with an implicit-explicit method. Estimates for the continuous in time and the fully discrete methods are derived, showing that the numerical approximation for the concentrations and the pressure are second order convergent in a discrete -norm and in a discrete -norm, respectively.
引用
收藏
页码:869 / 904
页数:36
相关论文
共 50 条
  • [21] Non-Fickian Transport in Porous Media: Always Temporally Anomalous?
    Alexey Zhokh
    Peter Strizhak
    Transport in Porous Media, 2018, 124 : 309 - 323
  • [22] Non-Fickian Transport in Porous Media: Always Temporally Anomalous?
    Zhokh, Alexey
    Strizhak, Peter
    TRANSPORT IN POROUS MEDIA, 2018, 124 (02) : 309 - 323
  • [23] Measurement and analysis of non-Fickian dispersion in heterogeneous porous media
    Levy, M
    Berkowitz, B
    JOURNAL OF CONTAMINANT HYDROLOGY, 2003, 64 (3-4) : 203 - 226
  • [24] A Second Order Approximation for Quasilinear Non-Fickian Diffusion Models
    Ferreira, Jose A.
    Gudino, Elias
    de Oliveira, Paula
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2013, 13 (04) : 471 - 493
  • [25] FICKIAN AND NON-FICKIAN DIFFUSION IN HIGH POLYMER SYSTEMS
    REHAGE, G
    ERNST, O
    FUHRMANN, J
    DISCUSSIONS OF THE FARADAY SOCIETY, 1970, (49): : 208 - &
  • [26] Non-Fickian Diffusion of Water in Polylactide
    Davis, Eric M.
    Minelli, Matteo
    Baschetti, Marco Giacinti
    Elabd, Yossef A.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (26) : 8664 - 8673
  • [27] Non-Fickian Diffusion of Water in Nafion
    Hallinan, Daniel T., Jr.
    De Angelis, Maria Grazia
    Baschetti, Marco Giacinti
    Sarti, Giulio C.
    Elabd, Yossef A.
    MACROMOLECULES, 2010, 43 (10) : 4667 - 4678
  • [28] A new look to non-Fickian diffusion
    Ferreira, J. A.
    Grassi, M.
    Gudino, E.
    de Oliveira, P.
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (01) : 194 - 204
  • [29] Non-Fickian diffusion in colloidal glasses
    Hagen, MHJ
    Frenkel, D
    Lowe, CP
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (01): : 275 - 280
  • [30] Study on non-Fickian behavior for solute transport through porous media
    Sharma P.K.
    Agarwal P.
    Mehdinejadiani B.
    ISH Journal of Hydraulic Engineering, 2022, 28 (S1) : 171 - 179