Non-Fickian convection-diffusion models in porous media

被引:11
|
作者
Barbeiro, Silvia [1 ]
Bardeji, Somayeh Gh [1 ,2 ]
Ferreira, Jose A. [1 ]
Pinto, Luis [1 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, Apartado 3008,EC Univ, P-3001454 Coimbra, Portugal
[2] Shiraz Univ Med Sci, Med Imaging Res Ctr, Shiraz, Iran
关键词
PARABOLIC INTEGRODIFFERENTIAL EQUATIONS; FINITE-ELEMENT METHODS; GALERKIN APPROXIMATIONS; HETEROGENEOUS MEDIA; MATHEMATICAL-MODEL; EVOLVING SCALES; DISPERSION; TRANSPORT; SUPRACONVERGENCE; SUPERCLOSENESS;
D O I
10.1007/s00211-017-0922-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differential equation, which models the convection-diffusion transport process. The numerical scheme is based on a conforming piecewise linear finite element method for the discretization in space. The fully discrete approximations is obtained with an implicit-explicit method. Estimates for the continuous in time and the fully discrete methods are derived, showing that the numerical approximation for the concentrations and the pressure are second order convergent in a discrete -norm and in a discrete -norm, respectively.
引用
下载
收藏
页码:869 / 904
页数:36
相关论文
共 50 条
  • [1] Non-Fickian convection–diffusion models in porous media
    Sílvia Barbeiro
    Somayeh Gh. Bardeji
    José A. Ferreira
    Luís Pinto
    Numerische Mathematik, 2018, 138 : 869 - 904
  • [2] Non-Fickian random walk diffusion models
    Addison, PS
    Qu, B
    ENVIRONMENTAL AND COASTAL HYDRAULICS: PROTECTING THE AQUATIC HABITAT, PROCEEDINGS OF THEME B, VOLS 1 & 2, 1997, 27 : 45 - 50
  • [3] NON-FICKIAN DIFFUSION
    GLASBEY, CA
    EUROPEAN JOURNAL OF SOIL SCIENCE, 1995, 46 (01) : 159 - 159
  • [4] Non-Fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion
    Gouze, Philippe
    Melean, Yasmin
    Le Borgne, Tanguy
    Dentz, Marco
    Carrera, Jesus
    WATER RESOURCES RESEARCH, 2008, 44 (11)
  • [5] Non-Fickian transport in heterogeneous saturated porous media
    Serrano, SE
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1997, 123 (01): : 70 - 76
  • [6] Non-Fickian mass transport in fractured porous media
    Fomin, Sergei A.
    Chugunov, Vladimir A.
    Hashida, Toshiyuki
    ADVANCES IN WATER RESOURCES, 2011, 34 (02) : 205 - 214
  • [7] EXPERIMENTAL INVESTIGATION OF NON-FICKIAN DIFFUSION IN MICROPOROUS MEDIA
    ROUSSIS, PP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1969, (SEP): : P114 - &
  • [8] Distributed order Hausdorff derivative diffusion model to characterize non-Fickian diffusion in porous media
    Liang, Yingjie
    Chen, Wen
    Xu, Wei
    Sun, HongGuang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 70 : 384 - 393
  • [9] Saturation Dependence of Non-Fickian Transport in Porous Media
    Hasan, Sharul
    Joekar-Niasar, Vahid
    Karadimitriou, Nikolaos K.
    Sahimi, Muhammad
    WATER RESOURCES RESEARCH, 2019, 55 (02) : 1153 - 1166
  • [10] A nonconforming scheme for non-Fickian flow in porous media
    Peizhen Wang
    Liying Jiang
    Shaochun Chen
    Journal of Inequalities and Applications, 2017