NUMERICAL METHODS OF NEW MIXED FINITE ELEMENT SCHEME FOR SINGLE-PHASE COMPRESSIBLE FLOW

被引:3
|
作者
Zhai, Shuying [1 ]
Feng, Xinlong [1 ]
Weng, Zhifeng [1 ,2 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国博士后科学基金;
关键词
Stabilized mixed finite element; velocity projection stabilization; single phase compressible flow; inf-sup condition; error estimate; LOCAL GAUSS INTEGRATIONS; STOKES PROBLEM; ELLIPTIC PROBLEMS; PARABOLIC PROBLEMS; EQUATIONS; STABILIZATION;
D O I
10.1142/S0219876213500552
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a new mixed finite element scheme is given based on the less regularity of velocity for the single phase compressible flow in practice. Based on the new mixed variational formulation, we give its stable conforming finite element approximation for the P-0-P-1 pair and its stabilized conforming finite element approximation for the P-1-P-1 pair. Moreover, optimal error estimates are derived in H-1-norm and L-2-norm for the approximation of pressure and error estimate in L-2-norm for the approximation of velocity by using two methods. Finally, numerical tests confirm the theoretical results of our methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] MIXED FINITE-ELEMENT METHODS FOR COMPRESSIBLE MISCIBLE DISPLACEMENT IN POROUS-MEDIA
    CHOU, SH
    LI, QA
    MATHEMATICS OF COMPUTATION, 1991, 57 (196) : 507 - 527
  • [42] Design and Finite Element Analysis for the Single-Phase Variable Reluctance Motor
    Mamede, A. C. F.
    Camacho, J. R.
    Malagoli, J. A.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (08) : 3636 - 3642
  • [43] Conservative Models and Numerical Methods for Compressible Two-Phase Flow
    Evgeniy Romenski
    Dimitris Drikakis
    Eleuterio Toro
    Journal of Scientific Computing, 2010, 42
  • [44] Conservative Models and Numerical Methods for Compressible Two-Phase Flow
    Romenski, Evgeniy
    Drikakis, Dimitris
    Toro, Eleuterio
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (01) : 68 - 95
  • [45] Mixed finite element methods
    Duran, Ricardo G.
    MIXED FINITE ELEMENTS, COMPATIBILITY CONDITIONS, AND APPLICATIONS, 2008, 1939 : 1 - 44
  • [46] A ROBUST CONSERVATIVE MIXED FINITE ELEMENT METHOD FOR ISENTROPIC COMPRESSIBLE FLOW ON PIPE NETWORKS
    Egger, H.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01): : A108 - A129
  • [47] A Variational Finite Element Discretization of Compressible Flow
    Gawlik, Evan S.
    Gay-Balmaz, Francois
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2021, 21 (04) : 961 - 1001
  • [48] Numerical analysis of single-phase gaseous flow characteristics in microchannels
    Zhang, Tian-Tian
    Jia, Li
    Wu, Li-Yuan
    Feng, Wu-Jun
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2007, 22 (09): : 1405 - 1411
  • [49] A Variational Finite Element Discretization of Compressible Flow
    Evan S. Gawlik
    François Gay-Balmaz
    Foundations of Computational Mathematics, 2021, 21 : 961 - 1001
  • [50] Numerical approximation of stiff transmission problems by mixed finite element methods
    Capatina-Papaghiuc, D
    Raynaud, N
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (05): : 611 - 629